Skip to main content
Log in

Planktonic Communities in Reservoirs of the Ore Deposits along the pH Gradient (Zabaykalsky Krai)

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The results of summer studies of phyto- and zooplankton in aquatic systems of technogenic origin are presented. There are low species richness and a significant range of the quantitative indicators of aquatic organisms. The change in the main structure-forming taxa in the pH gradient is shown. Environmental factors that determine the composition and structure of plankton communities have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Abramova, V.A., Hydrochemistry of Quarry Waters of the Zavitinskoye Deposit of Rare Metals (Zabaykalsky Krai), Aspirant, 2018, vol. 12, no. 2, p. 3.

    Google Scholar 

  2. Afonina, E.Yu., Tashlykova, N.A., Zamana, L.V., et al., The hydrochemistry and hydrobiology of technogenic reservoirs at mining territories of the southeastern Transbaikal region, Arid Ecosyst., 2022, vol. 12, no. 4, pp. 505. https://doi.org/10.1134/S2079096122040023

  3. Balushkina, E.B. and Vinberg, G.G., Zavisimost’ mezhdu massoi i dlinoi tela u planktonnykh zhivotnykh, Obshchie osnovy izucheniya vodnykh ekosistem (Dependence Between Mass and Body Length of Plankton Animals), Leningrad: Nauka, 1979.

  4. Blanchette, M.L. and Lund, M.A., Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities, Curr. Opin. Environ. Sustain., 2016, vol. 23, p. 28. https://doi.org/10.1016/j.cosust.2016.11.012

    Article  Google Scholar 

  5. Blanchette, M.L. and Lund, M.A., Foreword to the special issue on pit lakes: the current state of pit lake science, Mine Water Environ., 2020, vol. 39, p. 425. https://doi.org/10.1007/s10230-020-00706-6

    Article  Google Scholar 

  6. Castro, J.M. and Moore, J.N., Pit lakes: their characteristics and the potential for their remediation, Environ. Geol., 2000, vol. 39, no. 11, p. 1254.

    Article  CAS  Google Scholar 

  7. Deneke, R., Review of rotifers and crustaceans in highly acidic environments of pH values ≤3, Hydrobiologia, 2000, vol. 433, p. 167.

    Article  Google Scholar 

  8. Derham, T., Biological communities and water quality in acidic mine lakes, 2004. http://www.sese.uwa.edu.au/__data/assets/pdf_file/0011/1637354/Derham_2004.pdf. Cited December 21, 2022.

  9. Ejsmont-Karabin, J., The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index, Pol. J. Ecol., 2012, vol. 60, pp. 339.

    Google Scholar 

  10. El-Bassat, R.A. and Taylor, W.D., The zooplankton community of Lake Abo Zaabal, a newly-formed mining lake in Cairo, Egypt, Afr. J. Aquat. Sci., 2007, vol. 32, no. 2, p. 1.

    Article  Google Scholar 

  11. Ferrari, C.R., de Azevedo, H., Wisniewski, M.J.S., et al., An overview of an acidic uranium mine pit lake (Caldas, Brazil): Composition of the zooplankton community and limnochemical aspects, Mine Water Environ., 2015, vol. 34, p. 343. https://doi.org/10.1007/s10230-015-0333-9

    Article  CAS  Google Scholar 

  12. Filippova, K.A. and Deryagin, V.V., Chemical hydrology of mine pit lakes of the Bakala geotechnic system (Southern Urals), Water Res., 2005, vol. 32, no. 4, p. 427.

    Article  CAS  Google Scholar 

  13. Gammons, C.H., Harris, L.N., Castro, J.M., et al., Creating lakes from open pit mines: processes and considerations— with emphasis on northern environments, Can. Tech. Rep. Fish. Aquat. Sci., 2009, p. 2826.

  14. Gołdyn, R., Wasielewska, E.S., Madura, K.K., et al., Functioning of the gravel pit lake in Owińska (West Poland) in the years 2001–2005, in Teka Komisji Ochrony I Kształtowania Środowiska Przyrodniczego, 2006, vol. 3, p. 45.

  15. Gorash, Yu.Yu., Development of gold mining at the Darasun mine, Gorn. Inf.-Analit. Byull., 2004, no. 11, p. 154.

  16. Gorlacheva, E.P., Food and trophic relationships of fish in the Unda River (Trans-Baikal Territory), in Chteniya pamyati V.Ya. Levanidova (Vladimir Ya. Levanidov’s Biennial Memorial Meetings), Vladivostok: Fed. Nauchn. Tsentra Bioraznoobraziya Nazemnoi Bioty Vost. Azii Dal’nevost. Otd. Ross. Akad. Nauk, 2014, vol. 6.

  17. Goździejewska, A.M., Koszałka, J., Tandyrak, R., et al., Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes, Hydrobiologia, 2021, vol. 848, p. 2699. https://doi.org/10.1007/s10750-021-04590-1

    Article  CAS  Google Scholar 

  18. Hakanson, L. and Boulion, V., Modelling production and biomasses of herbivorous and predatory zooplankton in lakes, Ecol. Modell., 2003, vol. 161, p. 1.

    Article  Google Scholar 

  19. Hindák, F. and Hindáková, A., Diversity of cyanobacteria and algae of urban gravel pit lakes in Bratislava, Slovakia: a survey, Hydrobiologia, 2003, vol. 506, p. 155. https://doi.org/10.1023/B:HYDR.0000008631.82041.c7

    Article  Google Scholar 

  20. Hobaek, M., Manca, M., and Andersen, T., Factors influencing species richness in lacustrine zooplankton, Acta Oecol., 2002, vol. 23, p. 155.

    Article  Google Scholar 

  21. Ivanova, M.B. and Kazantseva, T.I., Effect of water pH and total dissolved solids on the species of pelagic zooplankton in lakes: a statistical analysis, Russ. J. Ecol., 2006, vol. 37, no. 4, p. 264.

    Article  Google Scholar 

  22. Kalin, M., Cao, C., Smith, M.P., and Olaveson, M.M., Development of the phytoplankton community in a pit-lake in relation to water quality changes, Water Res., 2001, vol. 35, no. 13, p. 3215.

    Article  CAS  PubMed  Google Scholar 

  23. Kalinkina, N.M., Ecological factors in the formation of tolerance of planktonic crustaceans to mineral pollution (using the example of water bodies of northern Karelia), Extended Abstract of Doctoral (Biol.) Dissertation, Petrozavodsk, 2003.

  24. Khomich, S.A., Quarry reservoirs as limnic systems, Vestn. Beloruss. Gos. Univ., 1986, vol. 2, no. 1, p. 73.

    Google Scholar 

  25. Kiselev, I.A., Plankton morei i kontinental’nykh vodoemov (The Plankton of Seas and Continental Water Bodies), Leningrad: Nauka, 1969, vol. 1.

  26. Korovchinskii, N.M., Kotov, A.A., Sinev, A.Yu., et al., Vetvistousye rakoobraznye (Crustacea: Cladocera) Severnoi Evrazii (Cladoceran crustaceans (Crystakea: Cladocera) of Northern Eurasia), Moscow: KMK, 2021.

  27. Krivina, E.S. and Tarasova, N.G., Features of the taxonomic structure of the man-made reservoir in the extinction period, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2018, vol. 20, no. 2, p. 20.

    Google Scholar 

  28. Leppänen, J.J., An overview of Cladoceran studies conducted in mine water impacted lakes, Int. Aquat. Res., 2018, vol. 10, p. 207. https://doi.org/10.1007/s40071-018-0204-7

    Article  Google Scholar 

  29. Magurran, A.E., Ecological Diversity and its Measurement, Princeton: Princeton Univ. Press, 1988.

    Book  Google Scholar 

  30. Marszelewski, W., Dembowska, E.A., Napiórkowski, P., and Solarczyk, A., Understanding abiotic and biotic conditions in post-mining pit lakes for efficient management: A case study (Poland), Mine Water Environ., 2017, vol. 36, p. 418. https://doi.org/10.1007/s10230-017-0434-8

    Article  CAS  Google Scholar 

  31. Mondal, S., Palit, D., and Hazra, N., Rotifer diversity in coal mine generated pit lakes of Raniganj Coal Field Area, West Bengal, India, J. Limnol. Freshwater Fish. Res., 2021, vol. 7, no. 2, p. 115. https://doi.org/10.17216/LimnoFish.777321

    Article  Google Scholar 

  32. Mondal, S., Palit, D., and Hazra, N., Study on composition and spatiotemporal variation of zooplankton community in coal mine generated pit lakes, West Bengal, India, Trop. Ecol., 2022. https://doi.org/10.1007/s42965-022-00274-6

  33. Moser, M. and Weisse, T., The most acidified Austrian lake in comparison to a neutralized mining lake, Limnologica, 2011, vol. 41, p. 303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nixdorf, B., Fyson, A., and Krumbeck, H., Review: plant life in extremely acidic waters, Environ. Exp. Bot., 2001, vol. 46, p. 203.

    Article  CAS  Google Scholar 

  35. Nixdorf, B., Lessmann, D., and Steinberg, C.E.W., The importance of chemical buffering for pelagic and benthic colonization in acidic waters, Water, Air, Soil Pollut., 2003, vol. 3, p. 27.

    Article  CAS  Google Scholar 

  36. Nixdorf, B., Lessmann, D., and Deneke, R., Mining lakes in a disturbed landscape: Application of the EC Water Framework Directive and future management strategies, Ecol. Eng., 2005, vol. 24, p. 67. https://doi.org/10.1016/j.ecoleng.2004.12.008

    Article  Google Scholar 

  37. Pereira, R., Soares, A., Ribeiro, R., and Calves, F., Assessing the trophic state of Linhos Lake: a first step towards ecological rehabilitation, Environ. Manage., 2002, vol. 64, p. 285. https://doi.org/10.1006/jema.2001.0521

    Article  CAS  Google Scholar 

  38. Pociecha, A., Bielańska-Grajner, I., Szarek-Gwiazda, E.E., et al., Rotifer diversity in the acidic pyrite mine pit lakes in the Sudety Mountains (Poland), Mine Water Environ., 2018, vol. 37, p. 518. https://doi.org/10.1007/s10230-017-0492-y

    Article  CAS  Google Scholar 

  39. Romanov, R.E., Ermolaeva, N.E., and Bortnikova, S.B., Evaluation of the influence of heavy metals on plankton in a technogenic reservoir, Khim. Interesakh Ustoich. Razvit., 2011, vol. 19, no. 3, p. 350.

    Google Scholar 

  40. Ruttner-Kolisko, A., Suggestions for biomass calculation of plankton rotifers, Arch. Hydrobiol. Beih. Ergebn. Limnol., 1977, vol. 8, p. 71.

    Google Scholar 

  41. Sadchikov, A.P., Metody izucheniya presnovodnogo fitoplanktona (Methods of Studying Freshwater Phytoplankton), Moscow: Univ. Shkola, 2003.

  42. Scheffer, M., The effect of aquatic vegetation on turbidity; how important are the filter feeders?, Hydrobiologia, 1999, vol. 408, p. 307. https://link.springer.com/article/10.1023/A:1017011320148

  43. Seelen, L.M.S., Teurlincx, S., Bruinsma, J., et al., The value of novel ecosystems: Disclosing the ecological quality of quarry lakes, Sci. Total Environ., 2021, vol. 769, p. 144294. https://doi.org/10.1016/j.scitotenv.2020.144294

    Article  CAS  PubMed  Google Scholar 

  44. Sienkiewicz, E. and Gąsiorowski, M., The evolution of a mining lake—From acidity to natural neutralization, Sci. Total Environ., 2016, vol. 557–558, p. 343. https://doi.org/10.1016/j.scitotenv.2016.03.088

  45. Sienkiewicz, E. and Gąsiorowski, M., The influence of acid mine drainage on the phyto- and zooplankton communities in a clay pit lake in the Łuk Mużakowa Geopark (Western Poland), Fundam. Appl. Limnol., 2018, vol. 191, no. 2, p. 143. https://doi.org/10.1127/fal/2018/1079

    Article  Google Scholar 

  46. Snit’ko, L.V. and Snit’ko, V.P., Taxonomic structure and ecology of phytoplankton in small forest lakes in the zone of technogenesis of sulphide deposits (Southern Urals), Inland Water Biol., 2019, vol. 12, no. 4, p. 393. https://doi.org/10.1134/S1995082919040151

    Article  Google Scholar 

  47. Soni, A.K., Mishra, B., and Singh, S., Pit lakes as an end use of mining: A review, J. Min. Environ., 2014, vol. 5, no. 2, p. 99. https://jme.shahroodut.ac.ir/article_326.html.

  48. Sukhovilo, N.Yu. and Romanchuk, A.I., Thermodynamic and hydrochemical features of small lakes and chalk quarry reservoirs in Belarus and Poland, Materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Aktual’nye voprosy nauk o zemle v kontseptsii ustoichivogo razvitiya Belarusi i sopredel’nykh gosudarstv” (Proc. IV Int. Sci.-Pract. Conf. “Current Issues of Geosciences in the Concept of Sustainable Development of Belarus and Neighboring Countries”), Gomel: Gomel. Gos. Univ., 2018, part 1, p. 42.

  49. Tashlykova, N.A., Afonina, E.Yu., Zamana, L.V., et al., Technogenic reservoirs (Trans-Baikal Territory): environmental features, Usp. Sovrem. Estestvozn., 2023, no. 8, p. 66. https://doi.org/10.17513/use.38090

  50. Tavernini, S., Nizzoli, D., Rossetti, G., and Viaroli, P., Trophic state and seasonal dynamics of phytoplankton communities in two sand-pit lakes at different successional stages, J. Limnol., 2009, vol. 68, no. 2, p. 217. https://doi.org/10.3274/JL09-68-2-06

    Article  Google Scholar 

  51. Thomas, E.J. and John, J., Diatoms and macroinvertebrates as biomonitors of mine-lakes in Collie, Western Australia, J. R. Soc. West. Aust., 2006, vol. 89, p. 109.

    Google Scholar 

  52. Udachin, V.N., Aminov, P.G., Lonshchakova, G.F., and Deryagin, V.V., Distribution of physicochemical parameters in quarry lakes of the Blavinsky and Yaman-Kasinsky pyrite deposits (Southern Urals), Vestn. Orenb. Gos. Univ., 2009, no. 5, p. 167.

  53. Vucic, J.M., Rachel, S., Gray, D.K., et al., Young gravel-pit lakes along Canada’s Dempster Highway: How do they compare with natural lakes?, Arct. Antarct. Alp. Res., 2019, vol. 51, no.1, p. 25. https://doi.org/10.1080/15230430.2019.1565854

    Article  Google Scholar 

  54. Weithoff, G., Moser, M., Kamjunke, N., et al., Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes, Limnologica, 2010, vol. 40, p. 161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wollmann, K., Deneke, R., Nixdorf, B., and Packroff, G., Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4), Hydrobiologia, 2000, vol. 433, p. 3.

    Article  CAS  Google Scholar 

  56. Wołowski, K., Uzarowicz, Ł., Łukaszek, M., and Pawlik-Skowrońska, B., Diversity of algal communities in acid mine drainages of different physico-chemical properties, Nova Hedwigia, 2013, vol. 97, nos. 1–2, p. 117. https://doi.org/10.1127/0029-5035/2013/0105

    Article  Google Scholar 

  57. Yurkevich, N.V., Geochemistry of waters and sediments of technogenic quarry lakes of the Salair ore field, Extended Abstract of Cand. Sci. (Geol.-Mineral.) Dissertation, Novosibirsk, 2009.

  58. Zamana, L.V. and Usmanov, M.T., An ecological and hydrogeochemical characteristiecs of water objects of gold-mining of Baley-Taseevo ore fild (East Transbaikalia), Izv. Sib. Otd. Sektsii Nauk Zemle Ross. Akad. Estestv. Nauk, 2009, vol. 1, no. 34, p. 106.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the staff of the Institute of Natural Resources, Ecology, and Cryology, Siberian Branch, Russian Academy of Sciences, for assistance in collecting plankton samples. We express our gratitude to E.B. Fefilova (Institute of Biology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences) for identifying the species of Harpacticoida.

Funding

This work was carried out as part of Russian Science Foundation grant no. 22-17-00035 “Ecology and Evolution of Aquatic Ecosystems under Conditions of Climatic Fluctuations and Anthropogenic Pressure.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Afonina.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonina, E.Y., Tashlykova, N.A. Planktonic Communities in Reservoirs of the Ore Deposits along the pH Gradient (Zabaykalsky Krai). Inland Water Biol 17, 59–70 (2024). https://doi.org/10.1134/S1995082924010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082924010024

Keywords:

Navigation