Skip to main content
Log in

Structure and Functioning of Plankton Communities in the Rybinsk Reservoir under the Conditions of Climate Change

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Based on the data of complex environmental studies, which have been regularly carried out at six standard stations of the Rybinsk Reservoir since the middle of the 20th century, the orientation of changes in the elements of the reservoir ecosystem associated with global climatic events has been analyzed. During the period of climate warming, which began in 1977 and continues into the 21st century, the air temperature in the warm season has increased by 0.9°C, the water temperature by 1.4°C, the average annual inflow by 7.5%, and the duration of the ice-free period by 2 weeks. An increase in electrical conductivity and color of water and a decrease in transparency are noted. With significant interannual variations in biological characteristics, in the 21st century, the number of bacterioplankton has increased 1.7 times and bacterial production has doubled. Chlorophyll content has increased 1.4 times and mean values >15 μg/L reflecting the eutrophic state of the reservoir are observed more often. In the biomass of phytoplankton, the proportion of small cell forms has increased. The total abundance of phytoplankton has increased due to the development of cyanobacteria, which form a long summer maximum in the seasonal dynamics of the community. The increase in water mineralization promoted the progressive spread of alien brackish-water algae. The biomass of zooplankton has increased 2.5 times. An increase in the abundance of crustaceans (Cladocerans by 1.6 times and Copepods by 1.9 times) has caused a change in the structure of zooplankton and the formation of a strong late summer peak of biomass. The intensification of hydrobiological processes was clearly manifested after the abnormally hot 2010, the conditions of which not only stimulated the development of plankton communities, but also caused the formation of oxygen deficiency in the bottom layers. Warming has significantly transformed the ecosystem of the Rybinsk Reservoir, intensified eutrophication processes, and worsened water quality. Changes in hydrometeorological characteristics have gone beyond the mild scenario of climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Adrian, R., Wilhelm, S., and Gerten, D., Life-history traits of lake plankton species may govern their phenological response to climate warming, Global Change Biol., 2006, vol. 12, p. 1652.

    Article  Google Scholar 

  2. Adrian, R., O’Reilly, C.M., Zagarese, H., et al., Lakes as sentinels of climate change, Limnol. Oceanogr., 2009, vol. 54, no. 6, p. 2283.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Balushkina, E.V. and Vinberg, G.G., Relationship between length and body weight of planktonic crustaceans, in Eksperimental’nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozer (Experimental and Field Studies of Biological Bases of Lake Productivity), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1979.

  4. Bertani, I., Primicerio, R., and Rossett, G., Extreme climatic event triggers a lake regime shift that propagates across multiple trophic levels, Ecosystems, 2016, vol. 19, no. 1, p. 16. https://doi.org/10.1007/s10021-015-9914-5

    Article  Google Scholar 

  5. Bikbulatov, E.S., Bikbulatova, E.M., Litvinov, A.S., and Poddubnyi, S.A., Gidrologiya i gidrokhimiya ozera Nero (Hydrology and Hydrochemistry of Lake Nero), Rybinsk: Dom Pechati, 2003.

  6. Butterwick, C., Heaney, S.I., and Talling, J.F., Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance, Freshwater Biol., 2005, vol. 50, no. 2, p. 291.

    Article  Google Scholar 

  7. Carter, J.L., Schindler, D.E., and Francis, T.B., Effects of climate change on zooplankton community interactions in an Alaskan lake, Clim. Change Responses, 2017, vol. 4, p. 3. https://doi.org/10.1186/s40665-017-0031-x

    Article  Google Scholar 

  8. Drozdov, V.V. and Smirnov, N.P., Large-scale variability of atmospheric circulation and a thermal mode of White sea region, Probl. Arkt. Antarkt., 2011, vol. 3, no. 89, p. 78.

    Google Scholar 

  9. Edel’shtein, K.K., Vodokhranilishcha Rossii: ekologicheskie problemy, puti ikh resheniya (Reservoirs of Russia: Environmental Problems, Ways to Solve Them), Moscow: GEOS, 1998.

  10. Ekologicheskie problemy Verkhnei Volgi (Environmental Problems of the Upper Volga), Yaroslavl: Yarosl. Gos. Tekh. Univ., 2001.

  11. Ekologiya fitoplanktona Rybinskogo vodokhranilishcha (Ecology of phytoplankton in the Rybinsk Reservoir), Tolyatti: Samar. Nauchn. Tsentr Ross. Akad. Nauk, 1999.

  12. Eutrophication of Waters. Monitoring, Assessment and Control, Paris: OECD, 1982.

  13. Evstigneev, V.M., Kislov, A.V., and Sidorova, M.V., Influence of climate changes on the annual river runoff over the East European plain in the 21st century, Vestn. Mosk. Univ., Ser. 5: Geogr. 2010, no. 2, p. 3.

  14. Gerten, D. and Adrian, R., Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation, Limnol. Oceanogr., 2000, vol. 45, no. 5, p. 1058.

    Article  ADS  Google Scholar 

  15. Gladyshev, M.I., Semenchenko, V.P., Dubovskaya, O.P., et al., Effect of water temperature on the content of essential polyunsaturated fatty acids in freshwater zooplankton, Dokl. Akad. Nauk Ross. Akad. Nauk, 2011, vol. 437, no. 1, p. 117.

    Google Scholar 

  16. Gopchenko, E.D. and Loboda, N.S., Assessment of possible changes in Ukraine’s water resources in the context of global warming, Gidrobiol. Zh., 2000, vol. 36, no. 3, p. 67.

    Google Scholar 

  17. Harris, G.P., Phytoplankton Ecology. Structure, Functioning and Fluctuation, New York: Chapman and Hall, 1986.

    Google Scholar 

  18. Hobbie, J.E., Daley, R.J., and Jasper, S., Use of nucleopore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 1977, vol. 33, no. 5, p. 1296.

    Article  Google Scholar 

  19. Ivanova, M.B., Produktsiya planktonnykh rakoobraznykh v presnykh vodakh (Production of Plankton Crustaceans in Fresh Waters), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1985.

  20. Jeffrey, S.W. and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanz., 1975, vol. 167, p. 191.

    Article  CAS  Google Scholar 

  21. Jeppesen, E., Sondergaard, M., Jensen, J.P., et al., Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies, Freshwater Biol., 2005, vol. 50, no. 9, p. 1747.

    Article  CAS  Google Scholar 

  22. Jeppesen, E., Kronvang, B., Olesen, J.E., et al., Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation, Hydrobiologia, 2011, vol. 663, no. 1, p. 1.

    Article  CAS  Google Scholar 

  23. Kitaev, S.P., Osnovy limnologii dlya gidrobiologov i ikhtiologov (Basics of Limnology for Hydrobiologists and Ichthyologists), Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2007.

  24. Kolomyts, E.G., Regional’naya model' global’nykh izmenenii prirodnoi sredy (Regional Model of Global Environmental Change), Moscow: Nauka, 2003.

  25. Kopylov, A.I. and Kosolapov, D.B., Bakterioplankton vodokhranilishch Verkhnei i Srednei Volgi (Bacterioplankton of Reservoirs of the Upper and Middle Volga River), Moscow: Sovrem. Gumanitarnogo Univ., 2008.

  26. Kopylov, A.I., Kosolapov, D.B., Maslennikova, T.S., and Mylnikova, Z.M., Production of heterotrophic bacterioplankton in a large meso-eutrophic reservoir: The importance of extracellular organic carbon released by phytoplankton, Contemp. Probl. Ecol., 2018, vol. 11, no. 1, p. 54. https://doi.org/10.1134/S1995425518010079

    Article  Google Scholar 

  27. Kopylov, A.I., Maslennikova, T.S., and Kosolapov, D.B., Seasonal and year-to-year variations of phytoplankton primary production in the Rybinsk Reservoir: The Effect of weather and climate variations, Water Res., 2019, vol. 46, no. 3, p. 395. https://doi.org/10.1134/S0097807819030114

    Article  CAS  Google Scholar 

  28. Korneva, L.G., Phytoplankton of the Rybinsk Reservoir: composition, distribution features, consequences of eutrophication, in Sovremennoe sostoyanie ekosistemy Rybinskogo vodokhranilishcha (Current Conditions of the Rybinsk Reservoir Ecosystem), St. Petersburg: Gidrometeoizdat, 1993.

  29. Korneva, L.G., Recent invasion of planktonic diatom algae in the Volga River and their causes, Inland Water Biol., 2007, no. 1, p. 28.

  30. Korneva, L.G., Invasions of alien species of planktonic microalgae into the fresh waters of Holarctic (Review), Russ. J. Biol. Invasions, 2014, vol. 5, no. 2, p. 65.

    Article  Google Scholar 

  31. Korneva, L.G., Fitoplankton vodokhranilishch basseina Volgi (Phytoplankton of Reservoirs in the Volga River Basin), Kostroma: Dom Pechati, 2015.

  32. Korneva, L.G., Solovyeva, V.V., and Sakharova, E.G., On the Distribution of Peridiniopsis kevei Grigor. et Vasas (Dinophyta) in the upper Volga reservoirs, Inland Water Biol., 2015, vol. 8, no. 4, p. 414. https://doi.org/10.1134/S1995082915040094

    Article  Google Scholar 

  33. Kosolapov, D.B., Kosolapova, N.G., and Rumyantseva, E.V., Activity and growth efficiency of heterotrophic bacteria in Rybinsk Reservoir, Biol. Bull., 2014, vol. 41, no. 4, p. 324. https://doi.org/10.1134/S1062359014040050

    Article  CAS  Google Scholar 

  34. Kraemer, B.M., Kakouei, K., Munteanu, C., et al., Worldwide moderate-resolution mapping of lake surface chl-a reveals variable responses to global change (1997–2020), PLoS Water, 2022, vol. 1, no. 10, p. e0000051. https://doi.org/10.1371/journal.pwat.0000051

    Article  Google Scholar 

  35. Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods of Studying of Water Microorganisms), Moscow: Nauka, 1989.

  36. Lazareva, V.I., Struktura i dinamika zooplanktona Rybinskogo vodokhranilishcha (The Structure and Dynamics of Zooplankton in the Rybinsk Reservoir), Moscow: KMK, 2010.

  37. Lazareva, V.I., Climate warming and its effects on zooplankton of Volga reservoirs, in Ekologicheskii monitoring. Ch. VIII. Sovremennye problemy monitoringa presnovodnykh ekosistem: Uchebnoe posobie (Environmental Monitoring, Part VIII: Current Problems of Monitoring of Freshwater Ecosystems. A Textbook), Nizhny Novgorod: Nizhegorod. Univ., 2014, pp. 182–208.

  38. Lazareva, V.I., Trophic Interactions in Zooplankton of the Tsimlyansk Reservoir (Don River, Russia), Inland Water Biol., 2022, vol. 15, no. 3, p. 2791. https://doi.org/10.1134/S1995082922030117

    Article  Google Scholar 

  39. Lazareva, V.I. and Sokolova, E.A., Dynamics and phenology of zooplankton in a large lowland reservoir: response to climate change, Usp. Sovrem. Biol., 2013, vol. 133, no. 6, p. 564.

    Google Scholar 

  40. Lazareva, V.I. and Sokolova, E.A., Metazooplankton of the plain reservoir during climate warming: biomass and production, Inland Water Biol., 2015, vol. 8, no. 3, p. 250. https://doi.org/10.1134/S1995082915030098

    Article  Google Scholar 

  41. Lazareva, V.I., Lebedeva, I.M., and Ovchinnikova, N.K., Changes in Zooplankton Community of the Rybinsk Reservoir over 40 Years, Biol. Vnutr. Vod, 2001, no. 4, p. 62.

  42. Litvinov, A.S., Energo- i massoobmen v vodokhranilishchakh Volzhskogo kaskada. (Energy and Mass Exchange in the Volga Chain of Reservoirs), Yaroslavl: Izd. Yarosl. Gos. Tekhn. Univ., 2000.

  43. Litvinov, A.S., Pyrina, I.L., Roshchupko, V.F., and Sokolova, E.N., The role of hydrometeorological conditions in the long-term dynamics of phytoplankton productivity in inland waters, in Prirodno-resursnye, ekologicheskie i sotsial’no-ekonomicheskie problemy okruzhayushchei sredy v krupnykh rechnykh basseinakh (Natural Resource, Environmental and Socio-Economic Environmental Problems in Large River Basins), Moscow: Media-Press, 2005, p. 70.

  44. Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (Methods of Studying the Biogeocenoses of Inland Water Bodies), Moscow: Nauka, 1975.

  45. Mineeva, N.M. Rastitel’nye pigmenty v vode volzhskikh vodokhranilishch (Plant Pigments in Water of Volga Reservoirs), Moscow: Nauka, 2004.

  46. Mineeva, N.M., Pervichnaya produktsiya planktona v vodokhranilishchakh Volgi (Plankton Primary Production in the Volga River Reservoirs), Yaroslavl: Printkhaus, 2009.

  47. Mineeva, N.M., Seasonal and interannual dynamics of chlorophyll in plankton of the Rybinsk reservoir based on fluorescence diagnosis, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk SSSR, 2016, vol. 76, no. 78, p. 75.

    Google Scholar 

  48. Mineeva, N.M., Chlorophyll and its role in freshwater ecosystem on the example of the Volga River reservoirs, in Chlorophylls, London: IntechOpen, 2022. https://doi.org/10.5772/intechopen.98122

  49. Mineeva, N.M., Stepanova, I.E., and Semadeni, I.V., Biogenic elements and their significance in the development of phytoplankton in reservoirs of the Upper Volga, Inland Water Biol., 2021, vol. 14, no. 1, p. 32. https://doi.org/10.1134/S1995082921010089

    Article  Google Scholar 

  50. Mooij, W.M., Hülsmann, S., De Senerpont, D.L.N., et al., The impact of climate change on lakes in the Netherlands: a review, Aquat. Ecol., 2005, vol. 39, p. 381.

    Article  CAS  Google Scholar 

  51. Mordukhai-Boltovskaya, E.D., Materials on the distribution and seasonal dynamics of zooplankton in the Rybinsk Reservoir, Tr. Biol. Stn. “Borok”, 1956, vol. 2, p. 108.

    Google Scholar 

  52. Nauchno-prikladnoi spravochnik: Mnogoletnie kolebaniya i izmenchivost' vodnykh resursov i osnovnykh kharakteristik stoka rek Rossiiskoi Federatsii (Long-Term Fluctuations and Variability of Water Resources and the Main Characteristics of the Flow of Rivers in the Russian Federation) Scientific and Applied Reference Book, St. Petersburg: RIAL, 2021.

  53. Nesterov, E.S., Severo-atlanticheskoe kolebanie: atmosfera i ocean (North Atlantic Oscillation: Atmosphere and Ocean), Moscow: Triada, 2013.

  54. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton: Lewis, 1993, p. 303.

    Google Scholar 

  55. Özkan, K., Jeppesen, E., Davidson, T.A., et al., Long-term trends and temporal synchrony in plankton richness, diversity and biomass driven by re-oligotrophication and climate across 17 Danish Lakes, Water, 2016, vol. 8, no. 10, p. 427. https://doi.org/10.3390/w8100427

    Article  Google Scholar 

  56. Paerl, H.W. and Huisman, J., Climate change: a catalyst for global expansion of harmful cyanobacterial blooms, Environ. Microbiol. Rep., 2009, vol. 1, no. 1, p. 27.

    Article  CAS  PubMed  Google Scholar 

  57. Poddubnyi, S.A., Tsvetkov, A.I., Ivanova, I.N., et al., Thermal and dynamic processes in lake Pleshcheevo, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk SSSR, 2020, vol. 90, no. 93, p. 7. https://doi.org/10.24411/0320-3557-2020-10009

    Article  Google Scholar 

  58. Porter, K.G. and Feig, Y.S., The use DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, p. 943. https://doi.org/10.4319/LO.1980.25.5.0943

    Article  ADS  Google Scholar 

  59. Pyrina, I.L., Long-term changes in the primary production of phytoplankton in the Rybinsk Reservoir due to the action of climatic factors, Biol. Vnutr. Vod, 2000, no. 1, p. 36.

  60. Pyrina, I.L., Litvinov, A.S., Kuchai, L.A., et al., Long-term changes in the primary production of phytoplankton in the Rybinsk Reservoir due to the action of climatic factors, in Sostoyanie i problemy produktsionnoi gidrobiologii (State and Problems of Production Hydrobiology), Moscow: KMK, 2006.

  61. Rivier, I.K., Sostav i ekologiya zimnikh zooplanktonnykh soobshchestv (Composition and Ecology of Winter Zooplanktonic Communities), Leningrad: Nauka, 1986.

  62. Rivier, I.K., Features of the functioning of zooplankton communities of different types of water bodies, in Struktura i funktsionirovanie presnovodnykh ekosistem (The Structure and Function of Freshwater Ecosystems), Leningrad: Nauka, 1988.

  63. Rivier, I.K., Lebedeva, I.M., and Ovchinnikova, N.K., Long-term dynamics of zooplankton in the Rybinsk Reservoir, in Ekologiya vodnykh organizmov verkhnevolzhskikh vodokhranilishch (Ecology of Aquatic Organisms in Upper Volga Reservoirs), Leningrad: Nauka, 1982.

  64. Romanenko, V.I., Mikrobiologicheskie protsessy produktsii i destruktsii organicheskogo veshchestva vo vnutrennikh vodoemakh (Microbiological Processes of Production and Destruction of Organic Matter in Inland Water Bodies), Leningrad: Nauka, Leningr. Otd., 1985.

  65. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vodoemov. Laboratornoe rukovodstvo (The Ecology of Freshwater Microorganisms: A Laboratory Manual), Leningrad: Nauka, 1974.

  66. Ruttner-Kolisko, A., Suggestion for biomass calculation of planktonic rotifers, Arch. Hydrobiol. Ergeb. Limnol., 1977, vol. 8, p. 71.

    Google Scholar 

  67. Rybinskoe vodokhranilishche i ego zhizn’ (Rybinsk Reservoir and its Life), Leningrad: Nauka, 1972.

  68. SCOR-UNESCO Working Group 17. Determination of photosynthetic pigments in sea water, in Monographs on Oceanographic Methodology, Montreux: UNESCO, 1966, p. 9.

    Google Scholar 

  69. Sovremennoe sostoyanie ekosistemy Rybinskogo vodokhranilishcha (The Current State of the Fishery Resources of the Rybinsk Reservoir), St. Petersburg: Gidrometeoizdat, 1993.

  70. Stepanova, I.E., Bikbulatova, E.M., and Bikbulatov, E.S., Patterns of dynamics of the content of nutrients in the waters of the Rybinsk Reservoir over the years of its existence, Voda: Khim. Ekol., 2013, no. 1, p. 15. https://doi.org//watchemec.ru/article/25349

  71. Struktura i funktsionirovaniem ekosistemy Rybinskogo vodokhranilishcha v nachale XXI veka (Structure and Functioning of the Ecosystem of the Rybinsk Reservoir at the Beginning of the 21st Century), Moscow: Ross. Akad. Nauk, 2018.

  72. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume (The Third Assessment Report on Climate Change and its Consequences on the Territory of the Russian Federation. General Summary), St. Petersburg: Naukoemkie Tekhnol., 2022.

  73. Vadadi-Fülöp, C., Sipkay, C., Meszaros, G., and Hufnagel, L., Climate change and freshwater zooplankton: what does it boil down to?, Aquat. Ecol., 2012, vol. 46, p. 501. https://doi.org/10.1007/s10452-012-9418-8

    Article  Google Scholar 

  74. Vladimirova, T.M., Zooplankton production of the Rybinsk Reservoir, in Biologiya i produktivnost' presnovodnykh bespozvonochnykh (Biology and Productivity of Freshwater Invertebrates), Leningrad: Nauka, 1974.

  75. Wagner, C. and Adrian, R., Exploring lake ecosystems: hierarchy responses to long-term change?, Global Change Biol., 2009, vol. 15, p. 1104.

    Article  ADS  Google Scholar 

  76. Wilhelm, S. and Adrian, R., Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton, Freshwater Biol., 2008, vol. 53, no. 2, p. 226. https://doi.org/10.1111/j.1365-2427.2007.01887.x

    Article  CAS  Google Scholar 

  77. Williamson, C.E., Brentrup, J.A., Zhang, J., et al., Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change, Limnol. Oceanogr., 2014, vol. 59, no. 3, p. 840. https://doi.org/10.4319/lo.2014.59.3.0840

    Article  ADS  CAS  Google Scholar 

  78. Winder, M. and Hunter, D.A., Temporal organization of phytoplankton communities linked to physical forcing, Oecologia, 2008, vol. 156, p. 179. https:doi.org/https://doi.org/10.1007/s00442-008-0964-7

    Article  ADS  PubMed  Google Scholar 

  79. Zakonnova, A.V., The effect of climate change on the thermal regime in the Rybinsk reservoir, Tr. Inst. Biol. Vnutr. Vod im. I. D. Papanina Ross. Akad. Nauk, 2021, vol. 94, no. 97, p. 7. https://doi.org/10.47021/0320-3557-2021-94-7-16

    Article  Google Scholar 

  80. Zakonnova, A.V. and Litvinov, A.S., Changes in the ion flow of the Volga River over a long-term period, in Aktual’nye problemy ekologii Yaroslavskoi oblasti (Urgent Environmental Problems in Yaroslavl Province), Yaroslavl: Verkhnevolzh. Otd. Ross. Ekol. Akad., 2005, vol. 3, no. 1, p. 187.

Download references

Funding

This work was carried out as part of State Tasks no. 121051100099-5, 121051100104-6, 121051100102-2, and 121051100109-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Mineeva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABBREVIATIONS

BPh and BZoo, biomass of phyto- and zooplankton; NZoo and NBac, abundance of zoo- and bacterioplankton; Chl a, chlorophyll a; NAO, North Atlantic Oscillation index; r, Pearson correlation coefficient; rS, Spearman correlation coefficient; R2, coefficient of determination; and p, significance level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineeva, N.M., Lazareva, V.I., Poddubnyi, S.A. et al. Structure and Functioning of Plankton Communities in the Rybinsk Reservoir under the Conditions of Climate Change. Inland Water Biol 17, 1–17 (2024). https://doi.org/10.1134/S1995082924010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082924010127

Keywords:

Navigation