Skip to main content
Log in

Peculiarities of the Structure of Zooplankton Communities in Floodplain Water Bodies of the Middle Ob

  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The zooplankton of the floodplain reservoirs of the Middle Ob, located at various distances from the main channel of the river, has been studied. It is shown that, in floodplain reservoirs, the development of the summer zooplankton complex begins simultaneously with the passage of the flood; in the summer months, the greatest species diversity and the highest biomass are noted in them. The more often a reservoir is filled with high waters, the higher the species diversity and abundance of zooplankton in it. Factors have been identified that statistically significantly determine the development of zooplankton in floodplain reservoirs: frequency of flooding, water temperature, content of organic substances, and (for a number of taxa) gas regime. It is confirmed that the zooplankton of floodplain reservoirs differs significantly from the communities of the mother river and from the lakes of the terrace above the floodplain in significant faunal diversity, increased species richness, and specific species structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Albrektiene, R., Rimeika, M., Zalieckiene, E., et al., Determination of organic matter by UV absorption in the ground water, J. Environ. Eng. Landscape Manage., 2012, vol. 20, p. 163. https://doi.org/10.3846/16486897.2012.674039

    Article  Google Scholar 

  2. Amoros, C. and Bornette, G., Connectivity and biocomplexity in water bodies of riverine floodplains, Freshwater Biol., 2002, vol. 47, p. 761.

    Article  Google Scholar 

  3. Andronikova, I.N., Strukturno-funktsional’naya organizatsiya zooplanktona ozernykh ekosistem raznykh troficheskikh tipov (Structural-Functional Organization of Zooplankton in Lake Ecosystems of Different Trophic Types), St. Petersburg: Nauka, 1996.

  4. Baranyi, C., Hein, T., Holarek, C., et al., Zooplankton biomass and community structure in a Danube River floodplain system: Effects of hydrology, Freshwater Biol., 2002, vol. 47, p. 473.

    Article  Google Scholar 

  5. Chaparro, G., Kandus, P., and O’Farrel, I., Effect of spatial heterogeneity on zooplankton diversity: A multi-scale habitat approximation in a floodplain lake, River Res. Appl., 2015, vol. 31, p. 85.

    Article  Google Scholar 

  6. Chaparro, G., Horvath, Z., O’Farrel, I., et al., Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions, Freshwater Biol., 2018, vol. 63, p. 380.

    Article  CAS  Google Scholar 

  7. Chaparro, G., Mariani, M., and Hein, T., Diversity of dormant and active zooplankton stages: spatial patterns across scales in temperate riverine floodplains, J. Plankton Res., 2021, vol. 43, no. 1, p. 61. https://doi.org/10.1093/plankt/fbaa063

    Article  Google Scholar 

  8. Dembowska, E. and Napiórkowski, P.A., Case study of the planktonic communities in two hydrologically different oxbow lakes (Vistula River, Central Poland), J. Limnol., 2015, vol. 74, p. 346.

    Google Scholar 

  9. Dias, J.D., Simões, N.R., Meerhoff, M., et al., Hydrological dynamics drives zooplankton matacommunity structure in a Neotropical floodplain, Hydrobiologia, 2016, vol. 781, p. 109.

    Article  CAS  Google Scholar 

  10. Dittrich, J., Dias, J.D., Bonecker, C.C., et al., Importance of temporal variability at different spatial scales for diversity of floodplain aquatic communities, Freshwater Biol., 2016, vol. 61, p. 316.

    Article  Google Scholar 

  11. Ermolaeva, N.I., Factors in the spatiotemporal organization of zooplankton communities in lakes in southern Western Siberia, Extended Abstract of Doctoral (Biol.) Dissertation, 2020.

  12. Ermolaeva, N.I. and Dvurechenskaya, S.Y., Regional indices of the indicator significance of zooplanktonic organisms in water bodies of southern Western Siberia, Russ. J. Ecol., 2013, vol. 44, no. 6, p. 527. https://doi.org/10.1134/S1067413613060064

    Article  Google Scholar 

  13. Funk, A., Reckendorfer, W., Kucera-Hirzinger, V., et al. Aquatic diversity in a former floodplain: Remediation in an urban context, Ecol. Eng., 2009, vol. 35, p. 1476.

    Article  Google Scholar 

  14. Górski, K., Collier, K.J., Duggan, I.C., et al., Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system, Freshwater Biol., 2013, vol. 58, p. 1458.

    Article  Google Scholar 

  15. Gruberts, D., Druvietis, I., Parele, J., et al., Impact of hydrology on aquatic communities of floodplain lakes along the Daugava River (Latvia), in Shallow Lakes in a Changing World. Developments in Hydrobiology, Dordrecht: Springer-Verlag, 2007, vol. 196, p. 223. https://doi.org/10.1007/978-1-4020-6399-2_21

    Book  Google Scholar 

  16. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

  17. Hein, T., Baranyi, C., Reckendorfer, W., and Schiemer, F., The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the River Danube, Austria, Sci. Total Environ., 2004, vol. 328, nos. 1–3, pp. 207–218. https://doi.org/10.1016/j.scitotenv.2004.01.006

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Junk, W.J., Bayley, P.B., and Sparks, R.E., The flood pulse concept in river-floodplain systems, Can. J. Fish Aquat. Sci., 1989, vol. 106, p. 110.

    Google Scholar 

  19. Khromykh, V.S., Dynamics of the Middle Ob floodplain landscapes, Vestn. Tomsk. Gos. Univ., 2007, no. 300, p. 223.

  20. Kobayashi, T., Ralph, T.J., Ryder, D.S., et al., Spatial dissimilarities in plankton structure and function during flood pulses in a semi-arid floodplain wetland system, Hydrobiologia, 2015, vol. 747, p. 19. https://doi.org/10.1007/s10750-014-2119-7

    Article  CAS  Google Scholar 

  21. Krylov, A.V. and Zhgareva, N.N., Impact of period of flooding on summer zooplankton of small lakes, Izv. Ross. Akad. Nauk, Ser. Geogr., 2016, no. 1, p. 58.

  22. Legendre, P. and Legendre, L., Numerical Ecology, Amsterdam: Elsevier, 2012.

    Google Scholar 

  23. Litosh, T.A., Tsygankova, Yu.V., Vizer, L.S., and Tsapenkov, A.V., Species diversity of planktonic and zoobenthic communities of floodplain lakes in the middle reaches of the Irtysh river in the Omsk region, Rybovod. Rybn. Khoz., 2021, no. 6, p. 17. https://doi.org/10.33920/sel-09-2106-02

  24. Liu, B., Zhou, C., Zheng, L., et al., Metacommunity concepts provide new insights in explaining zooplankton spatial patterns within large floodplain systems, Water, 2022, vol. 14, p. 93. https://doi.org/10.3390/w14010093

    Article  CAS  Google Scholar 

  25. Mäemets, A.H., Changes of zooplankton, in Antropogennoe vozdeistvie na malye ozera (Anthropogenic Impact on Small Lakes), Drabkova, V.G., Ed., Leningrad: Nauka, 1980, pp. 54–64.

  26. Namour, P. and Jaffrezic, N., Sensors for measuring biodegradable and total organic matter in water, TrAC, Trends Anal. Chem., 2010, vol. 29, no. 8, pp. 848–857. https://doi.org/10.1016/j.trac.2010.04.013ff.ffhal-00547575f

    Article  CAS  Google Scholar 

  27. Napiórkowski, P., Bąkowska, M., Mrozińska, N., et al., The effect of hydrological connectivity on the zooplankton structure in floodplain lakes of a regulated large river (the Lower Vistula, Poland), Water, 2019, vol. 11, no. 9, p. 1924. https://doi.org/10.3390/w11091924

    Article  CAS  Google Scholar 

  28. Obolewski, K., Glińska-Lewczuk, K., Ożgo, M., and Astel, A., Connectivity restoration of floodplain lakes: Anassessment based on macroinvertebrate communities, Hydrobiologia, 2016, vol. 774, p. 23.

    Article  CAS  Google Scholar 

  29. Obolewski, K., Glińska-Lewczuk, K., and Bąkowska, M., From isolation to connectivity: the effect of floodplain lake restoration on sediments as habitats for macroinvertebrate communities, Aquat. Sci., 2018, vol. 80, p. 4. https://doi.org/10.1007/s00027-017-0556-x

    Article  CAS  Google Scholar 

  30. Paidere J. Influence of flooding frequency on zooplankton in the floodplains of the Daugava River (Latvia), Acta Zool. Lit., 2009, vol. 19, p. 306.

    Article  Google Scholar 

  31. Paillex, A., Castella, E., zu Ermagassen, P.S.E., et al., Large river floodplain as a natural laboratory: non-native macroinvertebrates benefit from elevated temperatures, Ecosphere, 2017, vol. 8, no. 10, p. e01972. https://doi.org/10.1002/ecs2.1972

    Article  Google Scholar 

  32. Podshivalina, V.N., Spring Zooplankton of floodplain lakes: diversity, structure, and formation features in relation to variability of the hydrological regime, Ecology, 2022, vol. 60, p. 233. https://doi.org/10.1134/S1067413622030092

    Article  Google Scholar 

  33. Rukovodstvo po gidrobiologicheskomu monitoringu presnovodnykh ekosistem. (Handbook on Hydrobiological Monitoring of Freshwater Ecosystems), St. Petersburg: Gidrometeoizdat, 1992.

  34. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425. https://academic.oup.com/mbe/article/4/4/406/1029664?login=false

    CAS  PubMed  Google Scholar 

  35. Savichev, O.G., Influence of large tributaries on water chemistry in the Middle Ob river, Vestn. Tomsk. Gos. Univ., 2010, no. 340, p. 222.

  36. Schöll, K., Kiss, A., Dinka, M., and Berczik, A., Flood-pulse effects on zooplankton assemblages in a river-floodplain system (Gemenc Floodplain of the Danube, Hungary), Int. Rev. Hydrobiol., 2012, vol. 97, p. 41.

    Article  Google Scholar 

  37. Semenova, L.A. and Aleksyuk, V.A., Zooplankton of the Lower Ob, Vestn. Ekol., Lesoved. Landshaftoved., 2009, no. 10, p. 156.

  38. Shurganova, G.V., Zhikharev, V.S., Kudrin, I.A., et al., Zooplankton of floodplain lakes of the river Kerzhenets (Kerzhinski nature reserve, Nizhny Novgorod region), Samar. Nauchn. Vestn., 2018, vol. 7, no. 2, p. 138.

    Google Scholar 

  39. Sladeček, V., System of water quality from the biological point of view, Arch. Hydrobiol. Ergebn. Limnol., 1973, vol. 3.

    Google Scholar 

  40. Sovremennoe sostoyanie vodnykh resursov i funktsionirovanie vodokhozyaistvennogo kompleksa basseina Obi i Irtysha (The Current State of Water Resources and Functioning of the Water Management Complex of the Ob and Irtysh Basin), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2012.

  41. Sustavov, A.A., Features of the structure and abundance of zooplankton communities in water bodies of the floodplain-channel complex of the Lower Irtysh, Materialy Vserossiiskoi molodezhnoi nauchnoi konferentsii “Aktual’nye problemy ekologii Volzhskogo basseina” (Proc. All-Russ. Youth Sci. Conf. “Current Problems of Ecology of the Volga Basin”), 2019.

  42. Szerzyna, S., Mołczan, M., Wolska, M., et al., Absorbance based water quality indicators as parameters for treatment process control with respect to organic substance removal, E3S Web Conf., 2017, vol. 17, p. 00091. https://doi.org/10.1051/e3sconf/20171700091

  43. TerBraak, C.J.F., Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, PLS and WA-PLS) and classical approaches, Chemom. Intell. Lab. Syst., 1995, vol. 28, p. 165.

    Article  Google Scholar 

  44. Thomaz, S.M., Bini, L.M., and Bozelli, R.L., Floods increase similarity among aquatic habitats in River-floodplain systems, Hydrobiologia, 2007, vol. 579, p. 1.

    Article  Google Scholar 

  45. Vorobyev, S.N., Pokrovsky, O.S., Kirpotin, S.N., et al., Flood zone biogeochemistry of the Ob River middle course, Appl. Geochem., 2015, vol. 63, p. 133. https://doi.org/10.1016/j.apgeochem.2015.08.005

    Article  ADS  CAS  Google Scholar 

  46. Wantzen, K.M., Junk, W.J., and Rothhaupt, K.O., An extension of the floodpulse concept (FPC) for lakes, in Ecological Effects of Water-Level Fluctuations in Lakes, Developments in Hydrobiology, Dordrecht: Springer-Verlag, 2008, vol. 204, pp. 151–170. https://doi.org/10.1007/978-1-4020-9192-6_15

    Book  Google Scholar 

  47. Yermolaeva, N., Dvurechenskaya, S., Kirillov, V., and Puzanov, A., Dependence of long-term dynamics of zooplankton in the Ob River on interannual changes in hydrological and hydrochemical parameters, Water, 2021, vol. 13, p. 1910. https://doi.org/10.3390/w13141910

    Article  Google Scholar 

  48. Zhang, K., Xu, M., Wu, Q., et al., The response of zooplankton communities to the 2016 extreme hydrological cycle in floodplain lakes connected to the Yangtze River in China, Environ. Sci. Pollut. Res., 2018, vol. 25, p. 23286.

    Article  CAS  Google Scholar 

  49. Zuur, A.F., Ieno, E.N., and Elphick, C.S., A protocol for data exploration to avoid common statistical problems, Methods Ecol. Evol., 2010, vol. 1, no.1, pp. 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of the State Task of the Institute for Water and Environmental Problems, Siberian Branch, Russian Academy of Sciences, no. 121031200178-8 with support from the Development Program of Tomsk State University (Priority 2030) in accordance with a cooperation agreement with Tomsk State University. The research was carried out on the basis of the System of Experimental Bases Located along the Latitudinal Gradient of Tomsk State University Unique Scientific Installation with financial support from the Russian Ministry of Education and Science, agreement no. 075-15-2021-672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Yermolaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with an unregulated invertebrate species.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

12212_2024_5555_MOESM1_ESM.doc

Supplementary material (Appendix, Fig. S1, and Table  S1) has been published only online at https://link.springer.com and https://www.elibrary.ru.

Fig. S1. Water level of the Ob River according to the West Siberian Department for Hydrometeorology and Environmental Monitoring (Molchanovo gauging station) https://www.fishingsib.ru/waterinfo/gauging-station/molchanovo/enk8p7w5AJ8tQMu8/.

Table S1. Species composition of zooplankton in the Middle Ob and studied floodplain lakes in 2018–2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermolaeva, N.I., Noskov, Y.A. & Kritskov, I.V. Peculiarities of the Structure of Zooplankton Communities in Floodplain Water Bodies of the Middle Ob. Inland Water Biol 17, 174–187 (2024). https://doi.org/10.1134/S199508292401005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508292401005X

Keywords:

Navigation