Skip to main content
Log in

Effect of visible light catalyst Ag6Si2O7–TiO2 with core-shell nanostructure on performance of poly(vinylidene fluoride)-g-poly (ethylene glycol) methyl ether methacrylate/poly(vinylidene fluoride) high flux ultrafiltration membranes

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Combining photocatalysts are frequently used to address the issue of poly(vinylidene fluoride) (PVDF) membranes being susceptible to contamination. The main constraints of existing photocatalyst-modified films are the narrow light utilization range and the generally limited enhancement of hydrophilicity and flux of the films modified by a single photocatalyst. Herein, a novel visible light photocatalyst Ag6Si2O7–TiO2 with a core–shell nanostructure and a large specific surface area was prepared by in situ deposition. The casting solution was supplemented with Ag6Si2O7–TiO2 and 1.35 g PVDF-g-poly (ethylene glycol) methyl ether methacrylate (PEGMA) prepared by ATRP and then a film through non-solvent-induced phase transformation was prepared. M1 with 0.25 g Ag6Si2O7–TiO2 has ideal overall performance in filtration of pure water and 20 mg/L SA solution. Its pure water flux, recovery flux, and rejection were found to be 1471 and 1091 L/(m2 h), and 88.1%, respectively. Additionally, M1 has the best-increased flux by 20.3% greater under visible light (VIS) irradiation than under shading condition. To measure changes in flux and rejection under three conditions (shading, UV light, and VIS light), M1 was chosen as the representative membrane. There is no significant difference in filtering performance between UV and VIS, nevertheless, both are much better than no light. The photocatalytic degradation impact of M1 on ceftiofur sodium was next examined under UV and VIS circumstances, and the degradation effect of M1 under the two conditions was good and comparable, approximately 70% and 65%, respectively. It indicates that the modified membranes have excellent VIS responsiveness, flux, and anti-pollution performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

The authors declare that the materials and data in this study are practically available.

References

  1. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  2. Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971. https://doi.org/10.1039/c0ee00541j

    Article  CAS  Google Scholar 

  3. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95. https://doi.org/10.1016/j.desal.2013.06.016

    Article  CAS  Google Scholar 

  4. Huang H, Schwab K, Jacangelo JG (2009) Pretreatment for low pressure membranes in water treatment: a review. Environ Sci Technol 43:3011–3019. https://doi.org/10.1021/es802473r

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhu X, Loo H-E, Bai R (2013) A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J Membr Sci 436:47–56. https://doi.org/10.1016/j.memsci.2013.02.019

    Article  CAS  Google Scholar 

  6. Alpatova A, Kim E-S, Sun X, Hwang G, Liu Y, Gamal El-Din M (2013) Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: effect of casting composition. J Membr Sci 444:449–460. https://doi.org/10.1016/j.memsci.2013.05.034

    Article  CAS  Google Scholar 

  7. Zeng G, Ye Z, He Y, Yang X, Ma J, Shi H, Feng Z (2017) Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chem Eng J 323:572–583. https://doi.org/10.1016/j.cej.2017.04.131

    Article  CAS  Google Scholar 

  8. Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Khadivi MA, Falsafi M (2014) Nanoclay embedded mixed matrix PVDF nanocomposite membrane: preparation, characterization and biofouling resistance. Appl Surf Sci 313:207–214. https://doi.org/10.1016/j.apsusc.2014.05.185

    Article  CAS  Google Scholar 

  9. Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45:5888–5924. https://doi.org/10.1039/c5cs00579e

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25:2071–2076. https://doi.org/10.1002/adma.201204520

    Article  CAS  PubMed  Google Scholar 

  11. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471. https://doi.org/10.1021/cr800208y

    Article  CAS  PubMed  Google Scholar 

  12. Kang S, Asatekin A, Mayes AM, Elimelech M (2007) Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J Membr Sci 296:42–50. https://doi.org/10.1016/j.memsci.2007.03.012

    Article  CAS  Google Scholar 

  13. Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes: a review of methods. Prog Mater Sci 58:76–150. https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  14. Teow YH, Ooi BS, Ahmad AL, Lim JK (2020) Investigation of anti-fouling and UV-cleaning properties of PVDF/TiO2 mixed-matrix membrane for humic acid removal. Membranes 11:16. https://doi.org/10.3390/membranes11010016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27:2522–2565. https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  16. Riaz S, Park SJ (2020) An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J Ind Eng Chem 84:23–41. https://doi.org/10.1016/j.jiec.2019.12.021

    Article  CAS  Google Scholar 

  17. Guo JF, Ma B, Yin A, Fan K, Dai WL (2011) Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation. Appl Catal B 101:580–586. https://doi.org/10.1016/j.apcatb.2010.10.032

    Article  CAS  Google Scholar 

  18. Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 1:1441–1447. https://doi.org/10.1021/cs200320h

    Article  CAS  Google Scholar 

  19. Cao SW, Yin Z, Barber J, Boey FYC, Loo SCJ, Xue C (2012) Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. ACS Appl Mater Interfaces 4:418–423. https://doi.org/10.1021/am201481b

    Article  CAS  PubMed  Google Scholar 

  20. Al-keisy A, Ren L, Cui D, Xu Z, Xu X, Su X, Hao W, Dou SX, Du Y (2016) A ferroelectric photocatalyst Ag10Si4O13 with visible-light photooxidation properties. J Mater Chem A 4:10992–10999. https://doi.org/10.1039/c6ta03578g

    Article  CAS  Google Scholar 

  21. Hu Y, Zheng H, Xu T, Xu N, Ma H (2016) Highly efficient Ag6Si2O7/WO3 photocatalyst based on heterojunction with enhanced visible light photocatalytic activities. RSC Adv 6:103289–103295. https://doi.org/10.1039/c6ra23591c

    Article  ADS  CAS  Google Scholar 

  22. Lou Z, Huang B, Wang Z, Ma X, Zhang R, Zhang X, Qin X, Dai Y, Whangbo MH (2014) Ag6Si2O7: a silicate photocatalyst for the visible region. Chem Mater 26:3873–3875. https://doi.org/10.1021/cm500657n

    Article  CAS  Google Scholar 

  23. Wenwen J, Huilin MO, Tingyue FAN (2021) Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue. J Text Res 42:107–113

    Google Scholar 

  24. Yin J, Song J, Cai X (2021) Endowing the antifouling and self-cleaning properties of poly (ether sulfone) oil/water separation membrane by blending with amphiphilic block copolymer additive. Acta Polym Sinica 52:1368–1378

    CAS  Google Scholar 

  25. Wang S, Li T, Chen C, Liu B, Crittenden JC (2018) PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times. Front Environ Sci Eng 12:1–12. https://doi.org/10.1007/s11783-017-0980-0

    Article  ADS  CAS  Google Scholar 

  26. Zhang G, Jiang J, Zhang Q, Gao F, Zhan X, Chen F (2016) Ultralow oil-fouling heterogeneous poly (ether sulfone) ultrafiltration membrane via blending with novel amphiphilic fluorinated gradient copolymers. Langmuir 32:1380–1388. https://doi.org/10.1021/acs.langmuir.5b04044

    Article  CAS  PubMed  Google Scholar 

  27. Tang Y, Sun J, Li S, Ran Z, Xiang Y (2019) Effect of ethanol in the coagulation bath on the structure and performance of PVDF-g-PEGMA/PVDF membrane. J Appl Polym Sci 136:47380. https://doi.org/10.1002/app.47380

    Article  CAS  Google Scholar 

  28. Kong D, Ruan X, Geng J, Zhao Y, Zhang D, Pu X, Yao S, Su C (2021) 0D/3D ZnIn2S4/Ag6Si2O7 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 evolution under visible light. Int J Hydrog Energy 46:28043–28052. https://doi.org/10.1016/j.ijhydene.2021.06.053

    Article  CAS  Google Scholar 

  29. Yuan H, Liu H, Yang SF (2022) Effects of hydrothermal solvents on the catalytic performance of Cu/CeO2-TiO2 catalysts for CO2 hydrogenation to methanol. Acta Sci Circum 42:353–365

    CAS  Google Scholar 

  30. Cui J, Wu D, Li Z, Zhao G, Wang J, Wang L, Niu B (2021) Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activities. Ceram Int 47:15759–15770. https://doi.org/10.1016/j.ceramint.2021.02.148

    Article  CAS  Google Scholar 

  31. Song G, Zhang M, Song M (2021) Preparation and properties of a core-shell hydrogel loaded with yeast and TiO2 nanoparticles. Fine Chem 38:518–524

    Google Scholar 

  32. Cui XG, Feng LJ, Liu P (2017) Preparation and air filtration performance of SiO2-Ag aerogel/PLA composite melt-blown nonwovens. Adv Text Technol 2017:1–11

    Google Scholar 

  33. Qin J, Cui W, Feng C, Chen N, Li M (2020) One-step synthesis of Ag6Si2O7/AgCl heterojunction composite with extraordinary visible-light photocatalytic activity and stability. Res Chem Int 46:15–31. https://doi.org/10.1007/s11164-019-03933-x

    Article  CAS  Google Scholar 

  34. Sedaghati N, Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Ghosh S (2021) Integration of oxygen vacancy rich-TiO2 with BiOI and Ag6Si2O7: ternary p-n-n photocatalysts with greatly increased performances for degradation of organic contaminants. Colloids Surf A 629:126101. https://doi.org/10.1016/j.colsurfa.2020.126101

    Article  CAS  Google Scholar 

  35. Ratke L, Voorhees PW (2002) Growth and coarsening: ostwald ripening in material processing. Springer

  36. Li X, Xiong J, Xu Y, Feng Z, Huang J (2019) Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chinese J Catal 40:424–433. https://doi.org/10.1016/s1872-2067(18)63183-3

    Article  CAS  Google Scholar 

  37. Almaie S, Rasoulifard MH, Vatanpour V, Dorraji MSS (2023) Preparation and performance of a novel photocatalytic antibacterial Ag-Ag2C2O4-TiO2/PAMPS/PVDF-based membrane in an immobilized photocatalytic membrane reactor under visible-light irradiation. Ind Eng Chem Res 62:11626–11645. https://doi.org/10.1021/acs.iecr.3c01200

    Article  CAS  Google Scholar 

  38. Liu YL, Li Y, Xu JT, Fan ZQ (2010) Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). ACS Appl Mater Interfaces 2:1759–1768. https://doi.org/10.1021/am1002525

    Article  CAS  PubMed  Google Scholar 

  39. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389. https://doi.org/10.1039/c7ra01267e

    Article  ADS  CAS  Google Scholar 

  40. Blanco JF, Sublet J, Nguyen QT, Schaetzel P (2006) Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J Membr Sci 283:27–37. https://doi.org/10.1016/j.memsci.2006.06.011

    Article  CAS  Google Scholar 

  41. Han MJ, Nam ST (2002) Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 202:55–61. https://doi.org/10.1016/s0376-7388(01)00718-9

    Article  CAS  Google Scholar 

  42. Yin J, Zhou J (2015) Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination 365:46–56. https://doi.org/10.1016/j.desal.2015.02.017

    Article  CAS  Google Scholar 

  43. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  44. Sun J (2019) Preparation and properties of TiO2/PVDF-g-PEGMA/PVDF membrane. Shenyang Jianzhu University, China

    Google Scholar 

  45. Yu W, Zhao L, Chen F, Zhang H, Guo LH (2019) Surface bridge hydroxyl-mediated promotion of reactive oxygen species in different particle size TiO2 suspensions. J Phys Chem Lett 10:3024–3028. https://doi.org/10.1021/acs.jpclett.9b00863

    Article  CAS  PubMed  Google Scholar 

  46. Rosman N, Wan Salleh WN, Jaafar J, Harun Z, Aziz F, Ismail AF (2022) Photocatalytic filtration of zinc oxide-based membrane with enhanced visible light responsiveness for ibuprofen removal. Catalysts 12:209. https://doi.org/10.3390/catal12020209

    Article  CAS  Google Scholar 

  47. Xu Z, Ao Z, Chu D, Younis A, Li CM, Li S (2014) Reversible hydrophobic to hydrophilic transition in graphene via water splitting induced by UV irradiation. Sci Rep 4:6450. https://doi.org/10.1038/srep06450

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu Z, Wu T, Shi J, Teng K, Wang W, Ma M, Li J, Qian X, Li C, Fan J (2016) Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Membr Sci 520:281–293. https://doi.org/10.1016/j.memsci.2016.07.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province, China (No.2021JH2/10100003). Besides, the authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for part of the material analysis. The opinions expressed in this article and the author's ideas are absolutely not taken from any institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulan Tang.

Ethics declarations

Conflicts of interest

The authors declare no competing conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Sun, X., Zhang, X. et al. Effect of visible light catalyst Ag6Si2O7–TiO2 with core-shell nanostructure on performance of poly(vinylidene fluoride)-g-poly (ethylene glycol) methyl ether methacrylate/poly(vinylidene fluoride) high flux ultrafiltration membranes. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01299-5

Keywords

Navigation