Skip to main content
Log in

Sheet resistance prediction of laser induced graphitic carbon with transformer encoder-enabled contrastive learning

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Accurately predicting the sheet resistance of laser-induced graphitic carbon (LIGC) is crucial for optimizing process conditions and designing high-performance LIGC-based devices. However, identifying the most significant process parameter for predicting the sheet resistance of LIGC is challenging. In addition, training an accurate model with a small dataset remains a challenge. To address the first issue, a novel transformer encoder with a self-attention mechanism is introduced to determine the most and least significant process parameters affecting the sheet resistance of LIGC. To address the second issue, a contrastive learning method is developed to augment a small training dataset. Unlike conventional deep learning approaches that establish a direct relationship between process parameters and sheet resistance, the proposed method can learn the relationship between the difference in features extracted from process parameter settings and the difference in the corresponding sheet resistances. Experimental results have demonstrated that the proposed transformer encoder-enabled contrastive learning method accurately predicted the sheet resistance of LIGC and outperformed other machine learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alhajji, E., Zhang, F., & Alshareef, H. N. (2021). Status and prospects of laser-induced graphene for battery applications. Energy Technology, 9(10), 2100454.

    Article  CAS  Google Scholar 

  • Atwya, M., Panoutsos, G. (2023). In-situ porosity prediction in metal powder bed fusion additive manufacturing using spectral emissions: a prior-guided machine learning approach. Journal of Intelligent Manufacturing, pp. 1–24.

  • Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. in International conference on machine learning, pp. 1597–1607, PMLR.

  • Cheng, L., Guo, W., Cao, X., Dou, Y., Huang, L., Song, Y., Su, J., Zeng, Z., & Ye, R. (2021). Laser-induced graphene for environmental applications: progress and opportunities. Materials Chemistry Frontiers, 5(13), 4874–4891.

    Article  CAS  Google Scholar 

  • Chen, Y., Long, J., Zhou, S., Shi, D., Huang, Y., Chen, X., Gao, J., Zhao, N., & Wong, C.-P. (2019). Uv laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Methods, 3(10), 1900208.

    Article  CAS  Google Scholar 

  • de la Roche, J., López-Cifuentes, I., & Jaramillo-Botero, A. (2023). Influence of lasing parameters on the morphology and electrical resistance of polyimide-based laser-induced graphene (lig). Carbon Letters, 33(2), 587–595.

    Article  Google Scholar 

  • Groo, L., Nasser, J., Inman, D., & Sodano, H. (2021). Fatigue damage tracking and life prediction of fiberglass composites using a laser induced graphene interlayer. Composites Part B: Engineering, 218, 108935.

    Article  Google Scholar 

  • He, A., Luo, C., Tian, X., & Zeng, W. (2018). A twofold siamese network for real-time object tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4834–4843.

  • Kulyk, B., Silva, B. F., Carvalho, A. F., Silvestre, S., Fernandes, A. J., Martins, R., Fortunato, E., & Costa, F. M. (2021). Laser-induced graphene from paper for mechanical sensing. ACS Applied Materials & Interfaces, 13(8), 10210–10221.

    Article  CAS  Google Scholar 

  • Lam, D. V., Nguyen, V.-T., Roh, E., Ngo, Q.-T., Choi, W., Kim, J.-H., Kim, H., Choi, H.-S., & Lee, S.-M. (2021). Laser-induced graphitic carbon with ultrasmall nickel nanoparticles for efficient overall water splitting. Particle & Particle Systems Characterization, 38(9), 2100119.

    Article  CAS  Google Scholar 

  • Legnaioli, S., Campanella, B., Poggialini, F., Pagnotta, S., Harith, M., Abdel-Salam, Z., & Palleschi, V. (2020). Industrial applications of laser-induced breakdown spectroscopy: a review. Analytical Methods, 12(8), 1014–1029.

    Article  Google Scholar 

  • Le, H., Minhas-Khan, A., Nambi, S., Grau, G., Shen, W., & Wu, D. (2023). Predicting the sheet resistance of laser-induced graphitic carbon using machine learning. Flexible and Printed Electronics, 8(3), 035013.

    Article  Google Scholar 

  • Le, T.-S.D., Phan, H.-P., Kwon, S., Park, S., Jung, Y., Min, J., Chun, B. J., Yoon, H., Ko, S. H., Kim, S.-W., et al. (2022). Recent advances in laser-induced graphene: Mechanism, fabrication, properties, and applications in flexible electronics. Advanced Functional Materials, 32(48), 2205158.

    Article  CAS  Google Scholar 

  • Liu, Z., Song, Y., Tang, R., Duan, G., Tan, J. (2022). Few-shot defect recognition of metal surfaces via attention-embedding and self-supervised learning. Journal of Intelligent Manufacturing, pp. 1–15.

  • Liu, J., Ji, H., Lv, X., Zeng, C., Li, H., Li, F., Qu, B., Cui, F., & Zhou, Q. (2022). Laser-induced graphene (lig)-driven medical sensors for health monitoring and diseases diagnosis. Microchimica Acta, 189, 1–14.

    ADS  Google Scholar 

  • Liu, H., Xie, Y., Li, J., Sun, Z., Liu, J., Moon, K.-S., Lu, L., Chen, Y., Tang, Y., Chen, X., et al. (2021). Laser-induced nitrogen-self-doped graphite nanofibers from cyanate ester for on-chip micro-supercapacitors. Chemical Engineering Journal, 404, 126375.

    Article  CAS  Google Scholar 

  • Minhas-Khan, A., Nambi, S., & Grau, G. (2021). Low-resistance laser-induced graphitic carbon by maximizing energy delivery and pulse overlap. Carbon, 181, 310–322.

    Article  CAS  Google Scholar 

  • Mo, Y., Wu, Q., Li, X., & Huang, B. (2021). Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. Journal of Intelligent Manufacturing, 32, 1997–2006.

    Article  Google Scholar 

  • Nova, N. N., & Zarzar, L. D. (2022). Direct laser writing of graphitic carbon from liquid precursors. Chemistry of Materials, 34(10), 4602–4612.

    Article  CAS  Google Scholar 

  • Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., & Clark, J. et al. (2021). Learning transferable visual models from natural language supervision. in International conference on machine learning, pp. 8748–8763, PMLR.

  • Vashisth, A., Kowalik, M., Gerringer, J. C., Ashraf, C., Van Duin, A. C., & Green, M. J. (2020). Reaxff simulations of laser-induced graphene (lig) formation for multifunctional polymer nanocomposites. ACS Applied Nano Materials, 3(2), 1881–1890.

    Article  CAS  Google Scholar 

  • Wahab, H., Jain, V., Tyrrell, A. S., Seas, M. A., Kotthoff, L., & Johnson, P. A. (2020). Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ raman analysis. Carbon, 167, 609–619.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Z., Bakhtiyari, A. N., & Zheng, H. (2020). A comparative study of laser-induced graphene by co2 infrared laser and 355 nm ultraviolet (uv) laser. Micromachines, 11(12), 1094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Wang, K., Zheng, B., Dong, X., Mei, X., Lv, J., Duan, W., & Wang, W. (2018). Laser-induced graphene: preparation, functionalization and applications. Materials technology, 33(5), 340–356.

    Article  ADS  CAS  Google Scholar 

  • Wang, H., Zhao, Z., Liu, P., & Guo, X. (2022). Laser-induced graphene based flexible electronic devices. Biosensors, 12(2), 55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, Z., Nguyen, N.-T., Gao, Y., & Li, Q. (2020). Laser induced graphene for biosensors. Sustainable Materials and Technologies, 25, e00205.

    Article  CAS  Google Scholar 

  • Wei, Y., & Wu, D. (2023). Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms. Reliability Engineering & System Safety, 230, 108947.

    Article  Google Scholar 

  • Wei, Y., & Wu, D. (2023). Remaining useful life prediction of bearings with attention-awared graph convolutional network. Advanced Engineering Informatics, 58, 102143.

    Article  Google Scholar 

  • Wei, Y., Wu, D., & Terpenny, J. (2023). Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism. Mechanical Systems and Signal Processing, 188, 110010.

    Article  Google Scholar 

  • Wu, H., Triebe, M. J., & Sutherland, J. W. (2023). A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application. Journal of Manufacturing Systems, 67, 439–452.

    Article  Google Scholar 

  • Xia, M., Shao, H., Huang, Z., Zhao, Z., Jiang, F., & Hu, Y. (2022). Intelligent process monitoring of laser-induced graphene production with deep transfer learning. IEEE Transactions on Instrumentation and Measurement, 71, 1–9.

    Google Scholar 

  • Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J., & Bai, J. (2022). Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: a review and perspective. Composites Part B: Engineering, p. 110232.

  • Zurutuza, A., & Marinelli, C. (2014). Challenges and opportunities in graphene commercialization. Nature nanotechnology, 9(10), 730–734.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Aamir Minhas-Khan and Suresh Nambi for fabricating laser-induced graphene. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number ALLRP 576808 - 22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhong Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the research work presented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Grau, G. & Wu, D. Sheet resistance prediction of laser induced graphitic carbon with transformer encoder-enabled contrastive learning. J Intell Manuf (2024). https://doi.org/10.1007/s10845-024-02333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10845-024-02333-2

Keywords

Navigation