Skip to main content
Log in

Colloidal Properties of Sophora Japanese Fruit Dispersion

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Drug plant raw materials represent an important source of biologically active substances (BASs), which are used in pharmaceutical, cosmetic, food, and other industries. This paper presents the results of studying colloidal properties of crushed sophora Japanese fruits (hereinafter referred to as sophora) in order to improve the extraction of BASs. To achieve the goal, the following tasks have been set: the study of the ζ potential of sophora particles at different times of contact between the particles and an extractant and the pH values of the medium; determining the isoelectric point (IEP) of the sophora particles by electrophoresis; finding the point of zero charge (PZC) of sophora particles using potentiometric titration; and studying the influence of medium pH, sophora particle size, temperature, the presence of surfactants and ions, and the nature of an extractant on sophora swelling. The points of zero charge \({\text{(p}}{{{\text{H}}}_{{{\text{PZC}}}}}\)) of the aqueous dispersions of sophora and extracted flavonoids are 5.8 and 5.2, respectively, thus being close to the values \({\text{p}}{{{\text{H}}}_{{{\text{IEP}}}}}\). The swelling of sophora particles is limited and accompanied by the gradual fracture of the plant cells. Adsorption equilibrium is achieved within 30 min. In an alkaline region and in the presence of alcohol, the swelling of the sophora particles decreases, while it increases at elevated temperature and in the presence of NaI ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Liga, S., Paul, C., and Péter, F., Flavonoids: Overview of biosynthesis, Biological activity, and current extraction techniques, Plants, 2023, vol. 12, no. 14, p. 2732. https://doi.org/10.3390/plants12142732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bazarnova, Ju., Chernikova, D., Sevastyanova, A., and Đurović, S., Extraction of polyphenolic compounds from the Juglans regia L. Pellicles of using ultrasound, Khim. Rastit. Syr’ya, 2023, no. 1, pp. 273–278. https://doi.org/10.14258/jcprm.20230111970

  3. Locarev, A.V., Kuzyakova, L.M., Ohio, M.A., Glazova, T.M., Kovtun, E.V., and Nam, N.L., Comparative analysis of flavonoid content in extraction from complex medicinal plant raw materials using various extraction methods, Modern Science and Innovations, 2020, no. 2, pp. 158–165. https://doi.org/10.33236/2307-910X-2020-2-30-143-149

  4. Tveritinov, A.I., Golovin, A.V., and Skrypnik, L.N., Determination of optimal conditions for the extraction of flavonoids from the leaves of tansy Tanacetum vulgare L. using the method of mathematical planning of a multifactorial experiment, in KhimBioSeasons 2023: Sb. tezisov dokladov Vserossiiskogo foruma molodykh issledovatelei (ChemBioSeasons 2023: Proc. All-Russ. Forum of Young Researchers), Kemerovo, 2023, p. 83.

  5. Aslonova, I. Zh. and Karomatov, I.D., Medicinal properties of the Sophora japonica plant, Biologiya i Integrativnaya Meditsina, 2017, no. 11, pp. 179–190.

  6. Uyutova, E.V., Shishkanov, D.V., and Kurmano-va, E.N., Assessment of capillary protective properties of Sophora japonica, in Sovremennye tendentsii razvitiya tekhnologii zdorov’esberezheniya: Sb. nauchnykh trudov X Mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh (Modern Trends in the Development of Health-Preserving Technologies: Proc. X Int. Sci.-Pract. Conf. of Young Scientists) Moscow, 2022, pp. 421–424. https://doi.org/10.52101/9785870191058_421

  7. Aly, S.H., Elissawy, A.M., Mahmoud, A.M.A., El-Tokhy, F.S., Mageed, S.S.A., Almahli, H., Al-Rashood, S.T., Binjubair, F.A., Hassab, M.A.E., Eldehna, W.M., et al., Synergistic effect of Sophora japonica and Glycyrrhiza glabra flavonoid-rich fractions on wound healing: In vivo and molecular docking studies, Molecules, 2023, vol. 28, no. 7, p. 2994. https://doi.org/10.3390/molecules28072994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi, M.-J., Kim, K.-M., Cho, E.-J., Jeong, T.-B., and Jung, J.-Ch., A practical registration procedure of Korean health functional food ingredient: The registration of Sophora japonica L., fruit extract for excellent female menopausal efficacy, Food Supplements and Biomaterials for Health, 2021, vol. 1, no. 1, pp. 1–10. https://doi.org/10.52361/fsbh.2021.1.e1

    Article  CAS  Google Scholar 

  9. Vasileva, P. A., Nesterova, D. I., Chebotova, P. A., and Dmitrieva, I. B., Study of the influence of the extractant physicochemical characteristics on the process of extracting flavonoids from Sophora japonica fruits, Butlerovskie Soobshcheniya, 2022, vol. 71, no. 8, pp. 118–125. https://doi.org/10.37952/ROI-jbc-01/22-71-8-118

    Article  Google Scholar 

  10. Bykov, I.I., Kompan’tsev, D.V., and Privalo, I.M., Extraction of biologically active substances from Zingiber officinale roscoe in herbal remedies technology (Review), Vestn. Smolensk. Gos. Med. Akad., 2017, vol. 16, no. 2, pp. 170–180.

    Google Scholar 

  11. Adekenov, S.M., Khabarov, I.A., and Iskakov, A., Optimization of extraction technology of Peganum harmala L. roots, Khim. Rastit. Syr’ya, 2020, no. 3, pp. 279–284. https://doi.org/10.14258/jcprm.2020037763

  12. Novikova, A. E. and Skrypnik, L. N., Optimization of conditions for micellar-enzymatic extraction of pectin from hawthorn (Crataegus monogyna Jacq.) fruits, Tekhnika i Tekhnologiya Pishchevykh Proizvodstv, 2021, vol. 51, no. 4, pp. 733–742. https://doi.org/10.21603/2074-9414-2021-4-733-742

    Article  Google Scholar 

  13. Makarova, N.V. and Eremejeva, N.B., Comparative study of the influence of ultrasonic influences on the extraction of antioxidant compounds of blackberry berries (Vaccinium myrtillus L.), Khim. Rastit. Syr’ya, 2020, no. 1, pp. 167–177. https://doi.org/10.14258/jcprm.2020014425

  14. Liu, X.-M., Liu, Y., Shan, C.-H., Yang, X.-Q., Zhang, Q., Xu, N., Xu, L.-Y., and Song, W., Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube, Food Chem., 2022, vol. 14, p. 100287. https://doi.org/10.1016/j.fochx.2022.100287

    Article  CAS  Google Scholar 

  15. Kasterova, E.A., Prokop’eva, E.S., Mudrikova, A.E., and Kravtsova, S.S., Comparative study of the polyphenolic compounds content in the aerial parts of Cirsium esculentum, Cirsium serratuloides, and Ancathia igniaria (Asteraceae), Rastit. Resur., 2022, vol. 58, no. 3, pp. 261–271. https://doi.org/10.31857/S0033994622030062

    Article  Google Scholar 

  16. Kazub, V.T., Kosheleva, M.K., and Rudobashta, S.P., Kinetics of grinding of vegetable raw materials during electric discharge extraction, ChemChemTech, 2021, vol. 64, no. 6, pp. 76–82. https://doi.org/10.6060/ivkkt.20216406.6385

    Article  CAS  Google Scholar 

  17. Boiko, N.N., Makarevich, N.A., Pisarev, D.I., Zhilyakova, E.T., and Novikov, O.O., The role of sorption phenomena in the distribution of extractive substances between Glycyrrhizae radices and the extractant, Sorbtsionnye Khromatogr. Protsessy, 2018, vol. 18, no. 4, pp. 479–487. https://doi.org/10.17308/sorpchrom.2018.18/555

    Article  CAS  Google Scholar 

  18. Kotlyarova, I.A. and Stepina, I.V., Research of the swelling kinetics of pine wood, modified with amino-borates, Vestn. Belgorod. Tekhnol. Univ. im. V.G. Shukhova, 2018, no. 3, pp. 81–88.

  19. Meledina, T. V., Man’shin, D. V., Golovinskaya, O. V., Kharba, R.A., Ivanova, V.A., and Morozov, A.A., Factors affecting the electric charge of yeast cells Saccharomyces cerevisiae, Khranenie i Pererabotka Sel’khozsyr’ya, 2020, no. 2, pp. 73–84. https://doi.org/10.36107/spfp.2020.246

  20. Chukhno, A.S., Dmitrieva, I.B., Silaeva, D.S., Senina, A.S., Koshevenko, A.S., and Nazipova, A.R., Sorption of H+ and OH ions on chlorophyll, the effect of pH on the stability of aqueous chlorophyll dispersions, Butlerovskie Soobshcheniya, 2013, vol. 34, no. 5, pp. 124–130.

    Google Scholar 

  21. Ab Rahman, Z., Zaidan, M.W.A.M., Othman, A.N., et al., Optimizing extraction of phenolics and flavonoids from Solanum ferox Fruit, Nat. Sci., 2019, vol. 11, no. 4, pp. 99–105. https://doi.org/10.4236/ns.2019.114011

    Article  CAS  Google Scholar 

  22. Apaeva, A.V., Yamansarova, E.T., and Kukovinets, O.S., Studying of extraction of flavonoids from buckwheat husks, Vestn. Bashk. Univ., 2015, pp. 1223–1225.

    Google Scholar 

  23. Fes'kova, E.V., Leont’ev, V.N., Ignatovets, O.S., Adamtsevich, N.Yu., and Besarab, A.Yu., Extraction conditions and identification of flavonoids which stimulate tissue regeneration, Tr. Beloruss. Gos. Technol. Univ., 2019, pp. 49–53.

    Google Scholar 

  24. Alekseeva, T.V., Polyanskii, K.K., Klimova, E.A., and Kalgina, Yu.O., Influence of medium acidity on the nature of equilibrium swelling of biopolymers of food composition in water and technological media, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farmatsiya, 2020, no. 2, pp. 5–15.

  25. Ji, F., Zhou, W., Zhang, Z., and Zhang, B., Effects of relative molecular weight distribution and isoelectric point on the swelling behavior of gelatin films, Front. Chem., 2022, vol. 10, p. 857976. https://doi.org/10.3389/fchem.2022.857976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miao, L., Zhang, H., Yang, L., Chen, L., Xie, Y., and Xiao, J., Chapter 4.8—Flavonoids, in Antioxidants Effects in Health, 2022, pp. 353–374. https://doi.org/10.1016/B978-0-12-819096-8.00048-3

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Vasileva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasileva, P.A., Dmitrieva, I.B. Colloidal Properties of Sophora Japanese Fruit Dispersion. Colloid J 86, 23–32 (2024). https://doi.org/10.1134/S1061933X23601002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23601002

Keywords:

Navigation