Skip to main content
Log in

Effect of the Structure of Water-in-Oil Microemulsions of Sodium Di-(2-ethylhexyl)phosphate and Sodium Dodecyl Sulfate on the Efficiency of Microemulsion Leaching of Copper

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A relationship has been found between the structure of microemulsions based on sodium dodecyl sulfate (SDS) and sodium di-(2-ethylhexyl)phosphate (D2EHPNa) and the efficiency of microemulsion leaching of copper. The dependences of electrical conductivity on the volume fraction of water have been studied for microemulsions containing D2EHPNa or a mixture of SDS and butanol, decane, water, and di-(2-ethylhexyl)phosphoric acid as an extractant for copper extraction. A gradual passage from water-in-oil microemulsions with the predominance of isolated droplets to microemulsions with the predominance of dynamic clusters of droplets (percolated structure) takes place with the increase in the volume fraction of water. The conductivity percolation thresholds are approximately 0.18 and 0.20 for the microemulsions based on D2EHPNa and SDS, respectively. The temperature dependence of the logarithmic electrical conductivity is linear in a range of 20–80°C for the microemulsions with water volume fractions below (0.13 and 0.07, respectively) and above (0.30 and 0.23) the percolation threshold; in this temperature range the structure of the considered microemulsions remains unchanged. The experiments on microemulsion leaching performed with the use of a CuO-based model system at T = 80°C have shown that, for the microemulsions with the percolated structure (having water volume fractions of 0.30 for D2EHPNa microemulsions and 0.23 for SDS microemulsions), copper extraction is higher than that for the microemulsions with the predominance of isolated droplets (water volume fraction of 0.13 and 0.07, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Rakshir, A.K., Naskar, B., and Moulik, S.P., Commemorating 75 years of microemulsion, Curr. Sci., 2019, vol. 116, no. 6, pp. 898–912. https://doi.org/10.18520/cs/v116/i6/898-912

    Article  CAS  Google Scholar 

  2. Jalali-Jivan, M., Garavand, F., and Jafari, S.M., Microemulsions as nano-reactors for the solubilization, separation, purification and encapsulation of bioactive compounds, Adv. Colloid Interface Sci., 2020, vol. 283, p. 102227. https://doi.org/10.1016/j.cis.2020.102227

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, T., Kang, W., Yang, H., Li, Z., et al., Advances of microemulsion and its applications for improved oil recovery, Adv. Colloid Interface Sci., 2022, vol. 299, no. 23, p. 102527. https://doi.org/10.1016/j.cis.2021.102527

    Article  CAS  PubMed  Google Scholar 

  4. Murashova, N.M. and Yurtov, E.V., State of the art and prospects for studies of structure formation in extraction systems with metal compounds, Theor. Found. Chem. Eng., 2022, vol. 56, no. 1, pp. 53–68. https://doi.org/10.1134/S0040579521060075

    Article  CAS  Google Scholar 

  5. Guo, Y., Li, H.-Y., Shen, S., et al., Recovery of vanadium from vanadium slag with high phosphorus content via recyclable microemulsion extraction, Hydrometallurgy, 2020, vol. 198, nos. 1–4, p. 105509. https://doi.org/10.1016/j.hydromet.2020.105509

    Article  CAS  Google Scholar 

  6. Shao, M., Chen, M., Fan, M., et al., Microemulsion system constructed with a new cyano-functionalized ionic liquid for the extraction of Pd(II) and preparation of palladium nanoparticles, Sep. Purif. Technol., 2021, vol. 275, p. 119198. https://doi.org/10.1016/j.seppur.2021.119198

    Article  CAS  Google Scholar 

  7. Qi, W., He, J., Li, M., et al., Efficient extraction of rhenium through demulsification of imidazolium ionic liquid-based microemulsions from aqueous solution, Sep. Purif. Technol., 2022, vol. 297, p. 121574. https://doi.org/10.1016/j.seppur.2022.121574

    Article  CAS  Google Scholar 

  8. Pinheiro Nascimento, P.F., Barros Neto, E.L., Fernandes Bezerra, D.V., and Ferreira da Silva, A.J., Anionic surfactant impregnation in solid waste for Cu2+ adsorption: Study of kinetics, equilibrium isotherms, and thermodynamic parameters, J. Surfactants Deterg., 2020, vol. 23, no. 4, pp. 781–795. https://doi.org/10.1002/jsde.12388

    Article  CAS  Google Scholar 

  9. Yurtov, E.V. and Murashova, N.M., Leaching of metals with extractant-containing microemulsions, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, pp. 726–730. https://doi.org/10.1134/S0040579511050174

    Article  CAS  Google Scholar 

  10. Murashova, N.M., Levchishin, S.Y., and Yurtov, E.V., Leaching of metals with microemulsions containing bis-(2-ethyhexyl)phosphoric acid or tributylphosphate, Hydrometallurgy, 2018, vol. 175, pp. 278–284. https://doi.org/10.1016/j.hydromet.2017.12.012

    Article  CAS  Google Scholar 

  11. Guo, Y., Li, H., Yuan, Y., et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by of leaching and extraction processes, Int. J. Miner., Metall. Mater., 2021, vol. 28, no. 6, pp. 974–980. https://doi.org/10.1007/s12613-020-2105-1

    Article  CAS  Google Scholar 

  12. Polyakova, A.S., Murashova, N.M., and Yurtov, E.V., Microemulsions in sodium dodecyl sulfate–1-butanol–extractant–kerosene–water systems for extracting nonferrous metals from oxide raw materials, Russ. J. Appl. Chem., 2020, vol. 93, no. 2, pp. 244–251. https://doi.org/10.1134/S1070427220020135

    Article  CAS  Google Scholar 

  13. Yu, Z.-J. and Neuman, R.D., Reversed micellar solution-to-bicontinuous microemulsion transition in sodium bis(2-ethylhexyl)phosphate/n-heptane/water system, Langmuir, 1995, vol. 11, no. 4, pp. 1981–1986. https://doi.org/10.1021/la00004a010

    Article  Google Scholar 

  14. Murashova, N.M., Levchishin, S.Y., and Yurtov, E.V., Effect of bis-(2-ethylhexyl)phosphoric acid on sodium bis-(2-ethylhexyl)phosphate microemulsion for selective extraction of non-ferrous metals, J. Surfactants Deterg., 2014, vol. 17, no. 6, pp. 1249–1258. https://doi.org/10.1007/s11743-014-1598-x

    Article  CAS  Google Scholar 

  15. Lopian, T., Dourdain, S., Kunz, W., and Zemb, T., A formulator’s cut of the phase prism for optimizing selective metal extraction, Colloids Surf., A, 2018, vol. 557, pp. 2–8. https://doi.org/10.1016/j.colsurfa.2018.08.022

    Article  CAS  Google Scholar 

  16. Murashova, N.M., Polyakova, A.S., and Yurtov, E.V., The influence of di-(2-ethylhexyl)phosphoric acid on the properties of microemulsion in the sodium di-(2-ethylhexyl)phosphate–di-(2-ethylhexyl)phosphoric acid–decane–water system, Colloid J., 2018, vol. 80, no. 5, pp. 513–521. https://doi.org/10.1134/S1061933X18050101

    Article  CAS  Google Scholar 

  17. Van Nieuwkoop, J. and Snoei, G., Conductivity measurements in single-phase microemulsions of the system sodium dodecyl sulfate/1-butanol/water/heptane, J. Colloid Interface Sci., 1985, vol. 103, no. 2, pp. 417–435. https://doi.org/10.1016/0021-9797(85)90119-5

    Article  ADS  CAS  Google Scholar 

  18. Mo, C., Zhong, M., and Zhong, Q., Investigation of structure and structural transition in microemulsion systems of sodium dodecyl sulfonate + n-heptane + n‑butanol + water by cyclic voltammetric and electrical conductivity measurements, J. Electroanal. Chem., 2000, vol. 493, nos. 1–2, pp. 100–107. https://doi.org/10.1016/S0022-0728(00)00350-8

    Article  CAS  Google Scholar 

  19. Silva, V.L., Ribeiro, L.S., Oliveira Freitas, J.C., et al., Application of SDS surfactant microemulsion for removal of filter cake of oil-based drilling fluid: Influence of cosurfactant, J. Pet. Explor. Prod. Technol., 2020, vol. 10, no. 7, pp. 2845–2856. https://doi.org/10.1007/s13202-020-00952-y

    Article  CAS  Google Scholar 

  20. Derouiche, A. and Tondre, C., Metal ion transport through microemulsions liquid membranes, Colloids Surf., 1990, vol. 48, pp. 243–258. https://doi.org/10.1016/0166-6622(90)80232-S

    Article  CAS  Google Scholar 

  21. Baxamusa, S., Ehrmann, P., and Ong, J., Acoustic activation of water-in-oil microemulsions for controlled salt dissolution, J. Colloid Interface Sci., 2018, vol. 529, pp. 366–374. https://doi.org/10.1016/j.jcis.2018.06.032

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Huang, Y.-J. and Yates, M.Z., Copper etching by water-in-oil microemulsions, Colloids Surf., A, 2006, vol. 281, nos. 1–3, pp. 215–220. https://doi.org/10.1016/j.colsurfa.2006.02.041

    Article  CAS  Google Scholar 

  23. Bauduin, P., Touraud, D., Kunz, W., et al., The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities, J. Colloid Interface Sci., 2005, vol. 292, no. 1. pp. 244–254. https://doi.org/10.1016/j.jcis.2005.05.043

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Begum, F., Mollah, M.Y.A., Rahman, M.M., and Susan, M.A.B.H., Microstructural impact of sodium dodecyl sulfate/1-butanol/cyclohexane/water microemulsions on hydrolysis of crystal violet, Mater. Today: Proc., 2020, vol. 29, Part 4, pp. 1077–1084. https://doi.org/10.1016/j.matpr.2020.05.021

    Article  CAS  Google Scholar 

  25. Alexandridis, P., Holzwarth, J.F., and Hatton, T.A., Thermodynamics of droplet clustering in percolating AOT water-in-oil microemulsions, J. Phys. Chem., 1995, vol. 99, no. 20, pp. 8222–8232. https://doi.org/10.1021/j100020a054

    Article  CAS  Google Scholar 

  26. Li, Q., Li, T., and Wu, J., Comparative study on the structure of reverse micelles. 2. FT-IR,1H NMR, and electrical conductance of H2O/AOT/NaDEHP/n-heptane systems, J. Phys. Chem. B, 2000, vol. 104, no. 38, pp. 9011–9016. https://doi.org/10.1021/jp000336v

    Article  CAS  Google Scholar 

  27. Li, Q., Li, T., and Wu, J., Water solubilization capacity and conductance behaviors of AOT and NaDEHP systems in the presence of additives, Colloids Surf., A, 2002, vol. 197, nos. 1–3, pp. 101–109. https://doi.org/10.1016/S0927-7757(01)00861-5

    Article  ADS  CAS  Google Scholar 

  28. Paul, B.K., Mitra, R.K., and Moulik, S.P., Microemulsions: Percolation of conductance and thermodynamics of droplet clustering, in Encyclopedia of Surface and Colloid Science, Somasundaran, P., Deo, N., Farinato, R., et al., Eds., Boca Raton: CRC Press, 2015, 3rd ed., pp. 3927–3956. https://doi.org/10.1081/E-ESCS-120029893

  29. Chakraborty, I. and Moulik, S.P., Physicochemical studies on microemulsions: 9. Conductance percolation of AOT-derived W/O microemulsion with aliphatic and aromatic hydrocarbon oils, J. Colloid Interface Sci., 2005, vol. 289, no. 2, pp. 530–541. https://doi.org/10.1016/j.jcis.2005.03.080

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Yurtov, E.V. and Murashova, N.M., Microemulsion leaching of metals, in Solvent Extraction: Fundamentals to Industrial Applications. Proceedings of ISEC 2008 Inte-rnational Solvent Extraction Conference, September 15–19, 2008, Moyer, B.A., Ed., Tucson, Arizona, USA: The Canadian Institute of Mining, Metallurgy and Petroleum, 2008, pp. 1597–1602.

  31. Miyata, I., Miyamoto, H., and Yonese, M., Effect of chain lengths of n-alcohol on the formation of the single-phase microemulsions in n-heptane/n-alcohol/sodium dodecyl sulfate/water systems, Chem. Pharm. Bull., 1996, vol. 44, no. 5, pp. 1049–1055. https://doi.org/10.1248/cpb.44.1049

    Article  CAS  Google Scholar 

  32. Bera, A., Mandal, A., Ojha, K., and Kumar, T., Water solubilization capacity and conductance behaviors of anionic and cationic microemulsion systems, J. Chem. Eng. Data, 2011, vol. 56, no. 12, pp. 4422–4429. https://doi.org/10.1021/je200291v

    Article  CAS  Google Scholar 

  33. Dogra, A. and Rakshit, A.K., Phase behavior and percolation studies on microemulsion system water/SDS + Myrj45/cyclohexane in the presence of various alcohols as cosurfactants, J. Phys. Chem. B, 2004, vol. 108, no. 28, pp. 10053–10060. https://doi.org/10.1021/jp049928u

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Murashova.

Ethics declarations

The authors of this work declare that they have no conflicts of in-terest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashova, N.M., Polyakova, A.S. Effect of the Structure of Water-in-Oil Microemulsions of Sodium Di-(2-ethylhexyl)phosphate and Sodium Dodecyl Sulfate on the Efficiency of Microemulsion Leaching of Copper. Colloid J 86, 98–108 (2024). https://doi.org/10.1134/S1061933X2360104X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2360104X

Keywords:

Navigation