Skip to main content

Advertisement

Log in

Exploring the potential of deep regression model for next-location prediction

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Location-based services are gaining popularity; prediction of future destinations and crowd movement patterns are crucial components of these services. This article presents an attention-based neural network regression model designed to forecast future user locations, a critical aspect of location-based services. Leveraging two real-world mobility datasets, New York City check-in data from the Foursquare API and Porto taxi trajectories from Portugal. The model employs an attention-based encoder–decoder neural network to predict user destination coordinates in latitude and longitude. Beyond its predictive capabilities, this research delves into the intricacies of human mobility patterns, contributing to a deeper understanding of movement behavior and shedding light on challenges in current models for mobility prediction. The study explores the impact of various optimization algorithms on model performance, analyzing their effects on accuracy, with the mean haversine distance error serving as the evaluation metric. Notably, the model achieves remarkable results, giving a mean haversine distance error of 1.3336 for the Porto dataset and 1.6379 for the Foursquare NYC dataset when employing the Adam optimizer. We have extended our study by implementing our model on Universal Transverse Mercator coordinate systems. These findings underscore the model’s superiority over previous approaches, offering valuable insights for developing more precise location-based services and advancing mobility and human behavior analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Xia F, Wang J, Kong X, Wang Z, Li J, Liu C (2018) Exploring human mobility patterns in urban scenarios: a trajectory data perspective. IEEE Commun Mag 56(3):142–149

    Article  Google Scholar 

  2. Luca M, Barlacchi G, Lepri B, Pappalardo L (2021) A survey on deep learning for human mobility. ACM Comput Surv (CSUR) 55(1):1–44

    Article  Google Scholar 

  3. Luca M, Barlacchi G, Lepri B, Pappalardo L (2021) A survey on deep learning for human mobility. ACM Comput Surv (CSUR) 55(1):1–44

    Article  Google Scholar 

  4. Feng J, Li Y, Zhang C, Sun F, Meng F, Guo A, Jin D (2018) Deepmove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 world wide web conference, pp 1459–1468

  5. Song C, Qu Z, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Wang S, Cao J, Yu P (2020) Deep learning for spatio-temporal data mining: a survey. IEEE Trans Knowl Data Eng

  7. Toch E, Lerner B, Ben-Zion E, Ben-Gal I (2019) Analyzing large-scale human mobility data: a survey of machine learning methods and applications. Knowl Inf Syst 58:501–523

    Article  Google Scholar 

  8. Cuttone A, Lehmann S, González MC (2018) Understanding predictability and exploration in human mobility. EPJ Data Sci 7:1–17

    Article  Google Scholar 

  9. Liu Z, Li Z, Wu K, Li M (2018) Urban traffic prediction from mobility data using deep learning. IEEE Netw 32(4):40–46

    Article  Google Scholar 

  10. Enami S, Shiomoto K (2019) Spatio-temporal human mobility prediction based on trajectory data mining for resource management in mobile communication networks. In: 2019 IEEE 20th international conference on high performance switching and routing (HPSR). IEEE, pp 1–6

  11. Hast M, Searle KM, Chaponda M, Lupiya J, Lubinda J, Sikalima J, Kobayashi T, Shields T, Mulenga M, Lessler J et al (2019) The use of GPS data loggers to describe the impact of spatio-temporal movement patterns on malaria control in a high-transmission area of northern Zambia. Int J Health Geograph 18(1):1–18

    Article  Google Scholar 

  12. Kumar H, Singh MK, Gupta MP (2018) Smart mobility: crowdsourcing solutions for smart transport system in smart cities context. In: Proceedings of the 11th international conference on theory and practice of electronic governance, pp 482–488

  13. Cavdar SK, Taskaya-Temizel T, Musolesi M, Tino P (2020) A multi-perspective analysis of social context and personal factors in office settings for the design of an effective mobile notification system. Proc ACM Interact Mob Wearable Ubiquitous Technol 4(1):1–38

    Article  Google Scholar 

  14. Calabrese F, Colonna M, Lovisolo P, Parata D, Ratti C (2010) Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans Intell Transp Syst 12(1):141–151

    Article  Google Scholar 

  15. Creutzig F (2021) From smart city to digital urban commons: Institutional considerations for governing shared mobility data. Environ Res Infrastruct Sustain 1(2):025004

    Article  Google Scholar 

  16. Ruan S, Bao J, Liang Y, Li R, He T, Meng C, Li Y, Wu Y, Zheng Y (2020) Dynamic public resource allocation based on human mobility prediction. Proc ACM Interact Mob Wearable Ubiquitous Technol 4(1):1–22

    Article  Google Scholar 

  17. Wu H, Liu L, Yu Y, Peng Z, Jiao H, Niu Q (2019) An agent-based model simulation of human mobility based on mobile phone data: how commuting relates to congestion. ISPRS Int J Geo-Inf 8(7):313

    Article  Google Scholar 

  18. Hussain F, Hassan SA, Hussain R, Hossain E (2020) Machine learning for resource management in cellular and IoT networks: potentials, current solutions, and open challenges. IEEE Commun Surv Tutor 22(2):1251–1275

    Article  Google Scholar 

  19. Tang J, Liang J, Yu T, Xiong Y, Zeng G (2021) Trip destination prediction based on a deep integration network by fusing multiple features from taxi trajectories. IET Intel Transp Syst 15(9):1131–1141

    Article  Google Scholar 

  20. Santos G (2018) Sustainability and shared mobility models. Sustainability 10(9):3194

    Article  Google Scholar 

  21. Wang A, Zhang A, Chan EH, Shi W, Zhou X, Liu Z (2020) A review of human mobility research based on big data and its implication for smart city development. ISPRS Int J Geo-Inf 10(1):13

    Article  CAS  Google Scholar 

  22. Kong X, Wang K, Hou M, Xia F, Karmakar G, Li J (2022) Exploring human mobility for multi-pattern passenger prediction: a graph learning framework. IEEE Trans Intell Transp Syst 23(9):16148–16160

    Article  Google Scholar 

  23. Feng J, Rong C, Sun F, Guo D, Li Y (2020) PMF: a privacy-preserving human mobility prediction framework via federated learning. Proc ACM Interact Mob Wearable Ubiquitous Technol 4(1):1–21

    Article  Google Scholar 

  24. Chen Y, Long C, Cong G, Li C (2020) Context-aware deep model for joint mobility and time prediction. In: Proceedings of the 13th international conference on web search and data mining, pp 106–114

  25. Fernando T, Denman S, Sridharan S, Fookes C (2019) Pedestrian trajectory prediction with structured memory hierarchies. In: Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18. Springer, pp 241–256

  26. Sighencea BI, Stanciu RI, Căleanu CD (2021) A review of deep learning-based methods for pedestrian trajectory prediction. Sensors 21(22):7543

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Jiang S, Ferreira J, Gonzalez MC (2017) Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore. IEEE Trans Big Data 3(2):208–219

    Article  Google Scholar 

  28. Noursalehi P, Koutsopoulos HN, Zhao J (2019) Predictive decision support for real-time crowding prediction and information generation. Technical report, TRB

  29. Jurdak R, Zhao K, Liu J, AbouJaoude M, Cameron M, Newth D (2015) Understanding human mobility from twitter. PLOS ONE 10(7):0131469

    Article  Google Scholar 

  30. Lin Z, Feng J, Lu Z, Li Y, Jin D (2019) Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 1020–1027

  31. Jiang R, Cai Z, Wang Z, Yang C, Fan Z, Chen Q, Tsubouchi K, Song X, Shibasaki R (2021) DeepCrowd: a deep model for large-scale citywide crowd density and flow prediction. IEEE Trans Knowl Data Eng 35(1):276–290

    Google Scholar 

  32. Zhou F, Liu X, Zhong T, Trajcevski G (2021) Metamove: on improving human mobility classification and prediction via metalearning. IEEE Trans Cybern 52(8):8128–8141

    Article  Google Scholar 

  33. Saleh Mahdizadeh M, Bahrak B (2019) A regression framework for predicting user’s next location using call detail records. arXiv:1912.10438

  34. Rossi A, Barlacchi G, Bianchini M, Lepri B (2019) Modelling taxi drivers’ behaviour for the next destination prediction. IEEE Trans Intell Transp Syst 21(7):2980–2989

    Article  Google Scholar 

  35. Foursquare—NYC and Tokyo Check-ins. https://www.kaggle.com/datasets/chetanism /foursquare-nyc-and-tokyo-checkin-dataset

  36. Starace LLL (2020) Porto taxi trajectories: a CSV dataset containing 1710671 taxi trajectories recorded over one year (from 2013/07/01 to 2014/06/30) in the city of Porto, in Portugal. In: Porto taxi trajectories

  37. Calabrese F, Di Lorenzo G, Ratti C (2010) Human mobility prediction based on individual and collective geographical preferences. In: 13th International IEEE conference on intelligent transportation systems. IEEE, pp 312–317

  38. Ebrahimpour Z, Wan W, Cervantes O, Luo T, Ullah H (2019) Comparison of main approaches for extracting behavior features from crowd flow analysis. ISPRS Int J Geo-Inf 8(10):440

    Article  Google Scholar 

  39. Zhang S, Wang S, Wang X, Zhang S, Miao H, Zhu J (2022) Multi-task adversarial learning for semi-supervised trajectory-user linking. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 418–434

  40. Gao Q, Zhou F, Trajcevski G, Zhang K, Zhong T, Zhang F (2019) Predicting human mobility via variational attention, pp 2750–2756

  41. Proteasa V-A, Ciobanu R-I, Dobre C, Marin R-C (2023) Federated learning for human mobility. IEEE, pp 780–785

  42. Yang D, Fankhauser B, Rosso P, Cudre-Mauroux P (2020) Location prediction over sparse user mobility traces using RNNs. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, pp 2184–2190

  43. Nurhaida I, Noprisson H, Ayumi V, Wei H, Putra ED, Utami M, Setiawan H (2020) Implementation of deep learning predictor (LSTM) algorithm for human mobility prediction

  44. Staudemeyer RC, Morris ER (2019) Understanding LSTM—a tutorial into long short-term memory recurrent neural networks. arXiv:1909.09586

  45. Tian Y, Zhang K, Li J, Lin X, Yang B (2018) LSTM-based traffic flow prediction with missing data. Neurocomputing 318:297–305

    Article  Google Scholar 

  46. Wang Y, Huang M, Zhu X, Zhao L (2016) Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in natural language processing, pp 606–615

  47. Tao W, Li L, Chen C, Chen Z, Wen H (2022) When online meets offline: exploring periodicity for travel destination prediction. In: Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval, pp 2366–2370

  48. Lim N, Hooi B, Ng S-K, Wang X, Goh YL, Weng R, Tan R (2021) Origin-aware next destination recommendation with personalized preference attention. In: Proceedings of the 14th ACM international conference on web search and data mining, pp 382–390

  49. Wang J, Kong X, Xia F, Sun L (2019) Urban human mobility: data-driven modeling and prediction. ACM SIGKDD Explor Newsl 21(1):1–19

    Article  Google Scholar 

  50. Zhao P, Luo A, Liu Y, Xu J, Li Z, Zhuang F, Sheng VS, Zhou X (2020) Where to go next: a spatio-temporal gated network for next poi recommendation. IEEE Trans Knowl Data Eng 34(5):2512–2524

    Article  Google Scholar 

  51. Zhang C, Zhao K, Chen M (2022) Beyond the limits of predictability in human mobility prediction: context-transition predictability. IEEE Trans Knowl Data Eng

  52. Ke S, Xie M, Zhu H, Cao Z (2022) Group-based recurrent neural network for human mobility prediction. Neural Comput Appl 34(12):9863–9883

    Article  Google Scholar 

  53. Wang S, Wang B, Yao S, Qu J, Pan Y (2022) Location prediction with personalized federated learning. Soft Comput 1–12

  54. Xiao Y, Nian Q (2020) Vehicle location prediction based on spatiotemporal feature transformation and hybrid LSTM neural network. Information 11(2):84

    Article  Google Scholar 

  55. Jiang R, Cai Z, Wang Z, Yang C, Fan Z, Chen Q, Tsubouchi K, Song X, Shibasaki R (2021) Deepcrowd: a deep model for large-scale citywide crowd density and flow prediction. IEEE Trans Knowl Data Eng 35(1):276–290

    Google Scholar 

  56. Bebis G, Georgiopoulos M (1994) Feed-forward neural networks. IEEE Potentials 13(4):27–31

    Article  Google Scholar 

  57. Ozanich E, Gerstoft P, Niu H (2020) A feedforward neural network for direction-of-arrival estimation. J Acoust Soc Am 147(3)

  58. Dey R, Salem FM (2017) Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, pp 1597–1600

  59. Niu Z, Zhong G, Yu H (2021) A review on the attention mechanism of deep learning. Neurocomputing 452:48–62

    Article  Google Scholar 

  60. Tian Y, Zhang K, Li J, Lin X, Yang B (2018) Lstm-based traffic flow prediction with missing data. Neurocomputing 318:297–305

    Article  Google Scholar 

  61. Choi D, Shallue CJ, Nado Z, Lee J, Maddison CJ, Dahl GE (2019) On empirical comparisons of optimizers for deep learning. arXiv:1910.05446

  62. Jais IKM, Ismail AR, Nisa SQ (2019) Adam optimization algorithm for wide and deep neural network. Knowl Eng Data Sci 2(1):41–46

    Article  Google Scholar 

  63. Ramachandran P, Zoph B, Le QV (2017) Searching for activation functions. arXiv:1710.05941

  64. Saputra K, Nazaruddin N, Yunardi DH, Andriyani R (2019) Implementation of haversine formula on location based mobile application in Syiah Kuala University. In: 2019 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom). IEEE, pp 40–45

  65. Zhou P, Feng J, Ma C, Xiong C, Hoi SCH et al (2020) Towards theoretically understanding why SGD generalizes better than Adam in deep learning. Adv Neural Inf Process Syst 33:21285–21296

    Google Scholar 

  66. Krause CM, Zhang L (2019) Short-term travel behavior prediction with GPS, land use, and point of interest data. Transp Res Part B Methodol 123:349–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pushpak Shukla and Shailendra Shukla.

Corresponding author

Correspondence to Pushpak Shukla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Shukla, S. Exploring the potential of deep regression model for next-location prediction. Knowl Inf Syst (2024). https://doi.org/10.1007/s10115-024-02082-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10115-024-02082-x

Keywords

Navigation