Skip to main content
Log in

On the Structure of Temperature Pulsations near the Surface under Convective Conditions

  • ATMOSPHERE AND HYDROSPHERE PHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Temperature pulsations are measured under conditions of summer hot weather in the near-surface air layer in a desert territory using wire sensors distributed spatially and in height with a recording frequency of 1000 Hz. For the power spectra, slopes with values from “–1” to “–1.35” (scales: 0.2‒2 m) are recorded for frequencies below the “–5/3” inertial interval region. At frequencies above the inertial interval (scales: 0.01‒0.1 m), slopes range from “–4.2” to “–5.8.” In some episodes at frequencies less than 0.1‒0.3 Hz, there are slopes from “–0.2” to “–0.85.” Based on the equations of motion in the Boussinesq approximation, estimates are obtained for the observed slopes of the spectra: “–1,” “–4/3,” and “–7/3” that are typical of a thermally stratified medium. Using a qualitative (visual) method at different signal averaging times (1, 10, 200 s), the emergence of thermoconvective ramp structures with a temporal length of 0.3‒1 s is revealed, which constitute a ramp with a length of 1‒10 s at larger averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Krishnamurti and L. N. Howard, Proc. Natl. Acad. Sci. 78 (4), 1981–1985 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. E. A. Malinovskaya, O. G. Chkhetiani, G. S. Golitsyn, and V. A. Lebedev, Dokl. Earth Sci. 509 (2), 222–230 (2023).

    Article  CAS  Google Scholar 

  3. A. S. Frisch and J. A. Businger, Boundary Layer Meteorol. 3 (3), 301–328 (1973).

    Article  Google Scholar 

  4. B. M. Koprov et al., Boundary Layer Meteorol. 88 (3), 399–423 (1998).

    Article  Google Scholar 

  5. R. J. Taylor, Aust. J. Phys. 11 (2), 168–176 (1958).

    Article  Google Scholar 

  6. W. Chen et al., Boundary Layer Meteorol. 84, 99–124 (1997).

    Article  Google Scholar 

  7. D. Phong-Anant, A. J. Chambers, and R. A. I. Antonia, in Proc. Australasian Conf. on Hydraulics and Fluid Mechanics (ACT, Barton, 1980), Vol. 7, pp. 432–434.

  8. B. A. Kader, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 28 (12), 1235–1250 (1988).

    Google Scholar 

  9. J. M. Vindel and C. Yagüe, Boundary Layer Meteorol. 140, 73–85 (2011).

    Article  Google Scholar 

  10. K. G. McNaughton, R. J. Clement, and J. B. Moncrieff, Nonlin. Process. Geophys. 14 (3), 257–271 (2007).

    Article  Google Scholar 

  11. G. I. Gorchakov, O. G. Chkhetiani, A. V. Karpov, R. A. Gushchin, and O. I. Datsenko, Dokl. Earth Sci. (2024) (in press).

  12. C. P. Martens, J. Phys. A 9–10, 1751–1770 (1976).

    Article  Google Scholar 

  13. F. A. Gisina, Tr. Leningrad. Gidrometeorol. Inst., No. 34, 49–58 (1968).

  14. A. G. Sazontov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 15 (8), 820–828 (1979).

    Google Scholar 

  15. O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, Atmos. Chem. Phys. 12, 5147–5162 (2012).

    Article  CAS  Google Scholar 

  16. O. G. Chkhetiani and N. V. Vazaeva, Izv., Atmoss. Oceanic Phys. 55 (5), 432–446 (2019).

    Article  Google Scholar 

  17. T. M. Dillon and D. R. Caldwell, J. Geophys. Res.: Oceans 85, 1910–1916 (1980).

    Article  Google Scholar 

  18. G. S. Young, Earth-Sci. Rev. 25 (3), 179–198 (1988).

    Article  Google Scholar 

  19. S. K. Kao, J. Atmos. Sci. 27 (7), 1000–1007 (1970).

    Article  Google Scholar 

  20. F. A. Gisina, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2 (8), 804–813 (1966).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.O. Maksimenkov, E.A. Shishov, and B.A. Khartskhaev (Komsomolsky, Kalmykia) for their assistance in organizing and conducting in-situ measurements. We thank G.S. Golitsyn and E.B. Gledzer for their attention to this work and constructive feedback.

Funding

This work was supported by the Russian Science Foundation (project no. 20-17-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Malinovskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mukhortova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovskaya, E.A., Chkhetiani, O.G. & Azizyan, G.V. On the Structure of Temperature Pulsations near the Surface under Convective Conditions. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X24601159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X24601159

Keywords:

Navigation