Skip to main content
Log in

Abstract

In the real world of international business, machine learning (ML) is well established as an essential element in many operations, from finance and logistics to marketing and strategy. However, ML as an analytical tool is still far from widespread in international business (IB) as a science. In this article, we offer arguments as to why this should change by providing illustrative analyses with simulated and real data. We argue that IB as a research community could produce substantial progress if algorithmic ML techniques were adopted as part of the standard analytical toolkit, next to traditional probabilistic statistics. This is not only so because ML improves predictive accuracy but also because doing so would permit empirically addressing complexity and facilitate theory development in IB that does justice to the complex world of international businesses. Along the way, we provide tips and tricks by way of practical tutorial, all relating to a typical ML process pipeline.

Plain language summary

In the research realm, scientists and scholars often aim to comprehend complex occurrences by pinpointing patterns and connections within data. Conventional statistical methods, though potent, may occasionally be inadequate when dealing with the complex, non-linear interactions that characterize real-world data. This is when machine learning (ML – a branch of artificial intelligence that automates data analysis, enabling computers to learn and adapt through experience) can be employed, providing a toolkit that can manage complexity without being overwhelmed by it. The study under discussion connects conventional statistics and ML, demonstrating how ML can aid in theory development, particularly in areas like international business. The research includes an exploratory analysis, utilizing a dataset involving Dutch SMEs (small and medium-sized enterprises), to exhibit ML's potential. The researchers employed various ML techniques, such as Bayesian additive regression trees (BART), to forecast outcomes like the share of revenue earned internationally by these SMEs. Their tactic was to let the data direct the analysis, instead of imposing preconceived models, enabling a more genuine discovery of underlying patterns. The research results were remarkable. ML algorithms surpassed conventional linear models, even when the data was not excessively complex. This confirmed that ML could effectively manage both large and small datasets. The primary discoveries included identifying non-linear relationships and interactions between variables that traditional methods might overlook. Furthermore, the study revealed that ML could provide insights into the significance of different variables and their impacts on the outcomes. The researchers concluded that ML should not only be viewed as a prediction tool but also as a method for inductive exploration of intricate patterns in data. This could lead to a better comprehension of phenomena in multiple fields, including IB. They suggested that by incorporating ML into the research process, scholars could begin to formulate and test hypotheses that encompass a higher level of complexity, more accurately reflecting real-world scenarios. This research's potential impact is immense. It implies that ML can aid in revealing the rich interplay within data that traditional methods might miss. For the future, this means that researchers can approach their work with a new toolkit that is aptly suited for modern data sets' challenges. As ML becomes more accessible and understood, it could transform how we conduct research across disciplines, leading to more sophisticated and comprehensive theories that better reflect the world's complexity around us. This text was initially drafted using artificial intelligence, then reviewed by the author(s) to ensure accuracy.

Résumé

Dans le monde réel des affaires internationales (International Business–IB), l'apprentissage automatique (Machine Learning–ML) est bien établi comme un élément essentiel dans de nombreuses opérations, de la finance et de la logistique au marketing et à la stratégie. Cependant, le ML en qualité d’outil analytique est encore loin d'être répandu dans le domaine de l’IB en tant que science. Dans cet article, nous argumentons pourquoi cela devrait changer en apportant des analyses illustratives avec des données simulées et réelles. Nous argumentons que l'IB en tant que communauté de recherche pourrait réaliser des progrès substantiels si les techniques algorithmiques de ML étaient adoptées comme partie intégrante de la boîte à outils analytiques standard, à côté des statistiques probabilistes traditionnelles. Et ceci non seulement parce que le ML améliore la précision des prévisions, mais aussi parce qu’adopter le ML permettrait de traiter empiriquement la complexité et de faciliter le développement des théories en IB qui tient compte du monde complexe des entreprises internationales. En cours de route, nous élaborons des conseils et des astuces par le biais d'un tutoriel pratique, tous liés à un pipeline de processus de ML typique.

Resumen

En el mundo real de los negocios internacionales, el aprendizaje automático de las maquinas por sí mismas (machine learning o ML en inglés) está bien establecido como elemento esencial en muchas operaciones, de las finanzas a la logística al marketing y la estrategia. Sin embargo, el aprendizaje automático de las maquinas como una herramienta analítica esta aún muy lejos de ser ampliamente extendidos en Negocios Internacionales (IB por sus iniciales en inglés) como ciencia. En este artículo, ofrecemos argumentos sobre como esto debe cambiar, proporcionando análisis ilustrativos con datos simulados y reales. Argumentamos que la comunidad investigadora de Negocios Internacionales podría progresar sustancialmente si las técnicas algorítmicas de aprendizaje automático se adoptaran como parte del conjunto de herramientas analíticas estándar, junto a la estadística probabilística tradicional. Esto no sólo se debe a que el aprendizaje automático mejora la precisión predictiva, sino también a que permitiría abordar empíricamente la complejidad y facilitar el desarrollo de teorías en Negocios Internacionales que hagan justicia al complejo mundo de los negocios internacionales. A lo largo del proceso, ofrecemos algunos trucos y artimañas a modo de tutorial práctico, todos ellos relacionados con un proceso típico del aprendizaje automático.

Resumo

No mundo real dos negócios internacionais, o aprendizado de máquina (ML) está bem estabelecido como um elemento essencial em muitas operações, desde finanças e logística a marketing e estratégia. No entanto, ML como ferramenta analítica ainda está longe de estar difundida em Negócios Internacionais (IB) como uma ciência. Neste artigo, oferecemos argumentos sobre porque isso deveria mudar, fornecendo análises ilustrativas com dados de simulação e reais. Argumentamos que IB, como comunidade de pesquisa, poderia produzir um progresso substancial se técnicas algorítmicas de ML fossem adotadas como parte do kit de ferramentas analíticas padrão, cerca das estatísticas probabilísticas tradicionais. Isto não acontece apenas porque ML melhora a precisão de previsões, mas também porque fazê-lo permitiria abordar empiricamente a complexidade e facilitaria o desenvolvimento de teorias em IB que façam justiça ao mundo complexo dos negócios internacionais. Ao longo do caminho, fornecemos dicas e truques por meio de tutoriais práticos, todos relacionados a um pipeline típico de processo de ML.

摘要

在国际商业的现实世界中, 机器学习 (ML) 已成为从金融和物流到营销和战略等许多运营中的基本要素。然而, ML作为一种分析工具在作为一门科学的国际商务 (IB) 中还远未得到普及。在本文中, 我们通过提供模拟数据和真实数据的说明性分析来论证为什么这种情况应该改变。我们认为, 如果机器学习算法技术被采用作为仅次于传统概率统计标准分析工具包的一部分, IB 作为一个研究社区可以取得实质性的进展。这不仅是因为机器学习提高了预测的准确性, 还因为这样做会允许在实证上解决复杂性并促进 IB 的理论发展, 从而公平地对待复杂的国际商业世界。一路上, 我们通过实用教程提供提示和技巧, 所有这些都与典型的 ML 过程管道相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. When no misunderstanding can ensue, we use ‘model’ and ‘algorithm’ interchangeably.

  2. Demonstrating the relative performance of methods on simulated data is increasingly becoming the standard [see, e.g., Kalnins (2018) and Zelner (2009)].

  3. Other well-known resampling techniques are the use of a validation set in addition to a training and test set, and bootstrapping. The latter is also sometimes used within ML algorithms; random forests arguably being the best-known example. In that case, overfitting is already countered within the operation of the algorithm itself. All other safeguards implemented in the ML process pipeline never hurt, and should still be adhered to as well.

  4. On top of all of this, ML generally places great emphasis on regularization – i.e., adding non-data information or explicitly constraining parameters to prevent overfitting (see Grimmer et al., 2021). ML rather uses highly flexible algorithms and modern-day data, controlled by a proper process pipeline and regularization, than any of the ex ante model constraining common in traditional statistics.

  5. Technically, the correlation matrix for \(p\) correlated noise predictors with correlation value \(r\) is the form symmetric Toeplitz matrix of the sequence \(({r}^{0}, {r}^{1}, {r}^{2},\dots ,{r}^{(p-1)})\).

  6. Note that the traditional statistics’ \(p\)-value thresholds become close to meaningless in big data, a drawback not associated with ML.

  7. Note that preventing information leakage also means that all preprocessing steps use only the training data. If, e.g., a mean of a predictor is needed for centering, it is calculated on the training set and subsequently applied, without recalculation, on the test set.

  8. CP profiles are also known as Individual Conditional Expectations, and their graphical representations as ICE curves. See Goldstein, Kapelner, Bleich, and Pitkin (2015) for further details.

  9. Although, generally speaking, ML can cope with missing values better and in a more flexible manner than traditional statistics, a balanced discussion on the treatment of missing values would take up more space than we can spare (see Bosma & van Witteloostuijn, 2021).

  10. See, for example, this short explanation by Gelman.

  11. We define these as predictors meeting two criteria: (i) the ratio of unique values to sample size is lower than 0.1; and (ii) the ratio of the number of occurrences of the most frequent value to those of the second most frequent value is lower than 0.2 (see, e.g., Boehmke & Greenwell, 2020). Intuitively, for near-zero variance predictors, the probability of containing a single value in any given resample of the training data is high. As these predictors, usually with one dominant category or value, add little information to begin with, removing them is the better alternative. None of the predictors considered were near-zero variance.

  12. Tuning could also be done by, e.g., an iterative search where new hyperparameter combinations to be evaluated are discovered based on the sequence of search results.

  13. Values of hyperparameters for the best performing instance in tuning are: \(trees=429,\alpha =0.486, \beta =2.753,\) and \(k=2.503\). See Appendix II for further details.

  14. Of course, other interactions, and higher-level interactions, could also be investigated. Given the illustrative purpose of this analysis, though, we focus on pointing out possibilities rather than striving for any sort of completeness.

  15. This model is also called fractional logit and most suited to proportions that result from a discrete group size (like a number of sales, each of which can either be national or international). If the proportion does not result from underlying binomial trials, beta regressions could be considered. These cannot, however, deal with true zeros or ones in their basic setup. If, furthermore, possible true zeros and ones can be seen as different in kind, and not just degree, a type of selection model in which respondents select into and out of the assumed continuous process on the interval \((\mathrm{0,1})\), like a zero-one inflated beta model, can be considered. These often are mixture models that assume, e.g., different processes for those SMEs that never sell internationally (true zeros), and those that do so at least sometimes (non-zeros, possibly very small). In between the true zeros and ones, ‘how much’ is the relevant question, and this is modeled separately from the degenerate boundary points.

  16. Techniques like deep learning furthermore do require large amounts of training data, contrary to many other (classes of) ML algorithms.

References

  • Aguinis, H., Bergh, D., & Molina-Azorin, J. F. (2023). Methodological challenges and insights for future international business research. Journal of International Business Studies, 54(2), 219–232.

    Article  Google Scholar 

  • Aguinis, H., Ramani, R. S., & Cascio, W. F. (2020). Methodological practices in international business research: An after-action review of challenges and solutions. Journal of International Business Studies, 51(9), 1593–1608.

    Article  Google Scholar 

  • Alpaydin, E. (2014). Introduction to machine learning (3rd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685–725.

    Article  Google Scholar 

  • Baak, M., Koopman, R., Snoek, H., & Klous, S. (2020). A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Computational Statistics and Data Analysis, 152, 107043.

    Article  MathSciNet  Google Scholar 

  • Belloni, A., Chernozhukov, V., & Hansen, C. (2014). Inference on treatment effects after selection among high-dimensional controls. Review of Economic Studies, 81(2), 608–650.

    Article  MathSciNet  Google Scholar 

  • Bickel, P. J., Ritov, Y., & Stoker, T. M. (2006). Tailor-made tests for goodness of fit to semiparametric hypotheses. Annals of Statistics, 34(2), 721–741.

    Article  MathSciNet  Google Scholar 

  • Bishop, C. M. (2016). Pattern recognition and machine learning. New York: Springer.

    Google Scholar 

  • Boehmke, B., & Greenwell, B. (2020). Hands-on machine learning with R. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Bosma, B. & van Witteloostuijn, A. (2022). Why our correlation matrices tend to be incorrect. Mimeo.

  • Bosma, B., & van Witteloostuijn, A. (2021). Missing values in exploratory factor analysis: A ‘best of all possible worlds’ approach to imputation for incomplete survey data. Advance, Preprint.

    Google Scholar 

  • Breiman, L. (2001a). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Breiman, L. (2001b). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231.

    Article  MathSciNet  Google Scholar 

  • Brouthers, L. E., Mukhopadhyay, S., Wilkinson, T. J., & Brouthers, K. D. (2009). International market selection and subsidiary performance: A neural network approach. Journal of World Business, 44(3), 262–273.

    Article  Google Scholar 

  • Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. Econometrics Journal, 21(1), C1–C68.

    Article  MathSciNet  Google Scholar 

  • Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. Annals of Applied Statistics, 4(1), 266–298.

    Article  MathSciNet  Google Scholar 

  • Choudhury, P., Allen, R. T., & Endres, M. G. (2021). Machine learning for pattern discovery in management research. Strategic Management Journal, 42(1), 30–57.

    Article  Google Scholar 

  • Choudhury, P., Wang, D., Carlson, N. A., & Khanna, T. (2019). Machine learning approaches to facial and text analysis: Discovering CEO oral communication styles. Strategic Management Journal, 40(11), 1705–1732.

    Article  Google Scholar 

  • Cramér, H. (1999). Mathematical methods of statistics. Princeton: Princeton University Press.

    Google Scholar 

  • Dau, L. A., Santangelo, G. D., & van Witteloostuijn, A. (2022). Replication studies in international business. Journal of International Business Studies, 53(2), 215–230.

    Article  Google Scholar 

  • Eden, L., & Nielsen, B. B. (2020). Research methods in international business: The challenge of complexity. Journal of International Business Studies, 51(9), 1609–1620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Efron, B. (2020). Prediction, estimation, and attribution. Journal of the American Statistical Association, 115(530), 636–655.

    Article  MathSciNet  CAS  Google Scholar 

  • Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20(1), 1–81.

    MathSciNet  CAS  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19(1), 1–67.

    MathSciNet  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.

    Article  MathSciNet  Google Scholar 

  • Friedman, J. H., Grosse, E., & Stuetzle, W. (1983). Multidimensional additive spline approximation. SIAM Journal on Scientific and Statistical Computing, 4(2), 291–301.

    Article  MathSciNet  Google Scholar 

  • Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. Annals of Applied Statistics, 2(3), 916–954.

    Article  MathSciNet  Google Scholar 

  • Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics, 24(1), 44–65.

    Article  MathSciNet  Google Scholar 

  • Grimmer, J., Roberts, M. E., & Stewart, B. M. (2021). Machine learning for social science: An agnostic approach. Annual Review of Political Science, 24, 395–419.

    Article  Google Scholar 

  • Haans, R. F. J., & van Witteloostuijn, A. (2019). Regional stickiness of novel ideas in the scholarly international business community. Cross Cultural & Strategic Management, 26(2), 145–165.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2017). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Google Scholar 

  • He, V. F., Puranam, P., Shrestha, Y. R., & von Krogh, G. (2020). Resolving governance disputes in communities: A study of software license decisions. Strategic Management Journal, 41(10), 1837–1868.

    Article  Google Scholar 

  • Henninger, M., Debelak, R., Rothacher, Y., & Strobl, C. (2023). Interpretable machine learning for psychological research: Opportunities and pitfalls. Psychological Methods. https://doi.org/10.1037/met0000560

    Article  PubMed  Google Scholar 

  • Hu, M. Y., Zhang, G. P., & Chen, H. (2004). Modeling foreign equity control in Sino-foreign joint ventures with neural networks. European Journal of Operational Research, 159(3), 729–740.

    Article  Google Scholar 

  • Imbens, G. W. (2022). Causality in econometrics: Choice vs chance. Econometrica, 90(6), 2541–2566.

    Article  Google Scholar 

  • Kalnins, A. (2018). Multicollinearity: How common factors cause Type 1 errors in multivariate regression. Strategic Management Journal, 39(8), 2362–2385.

    Article  Google Scholar 

  • Kleinberg, J., Ludwig, J., Mullainathan, S., & Obermeyer, Z. (2015). Prediction policy problems. American Economic Review, 105(5), 491–495.

    Article  PubMed  Google Scholar 

  • Knight, G., Chidlow, A., & Minbaeva, D. (2022). Methodological fit for empirical research in international business: A contingency framework. Journal of International Business Studies, 53(1), 39–52.

    Article  Google Scholar 

  • Lindner, T., Puck, J., & Verbeke, A. (2022). Beyond addressing multicollinearity: Robust quantitative analysis and machine learning in international business research. Journal of International Business Studies, 53(7), 1307–1314.

    Article  Google Scholar 

  • Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, think and work. London: John Murray.

    Google Scholar 

  • Meyer, K. E., van Witteloostuijn, A., & Beugelsdijk, S. (2017). What’s in a p? Reassessing best practices for conducting and reporting hypothesis-testing research. Journal of International Business Studies, 48(5), 535–551.

    Article  Google Scholar 

  • Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.

    Article  Google Scholar 

  • Oswald, F. L., Behrend, T. S., Putka, D. J., & Sinar, E. (2020). Big data in industrial-organizational psychology and human resource management: Forward progress for organizational research and practice. Annual Review of Organizational Psychology and Organizational Behavior, 7, 505–533.

    Article  Google Scholar 

  • Palocsay, S. W., & White, M. M. (2004). Neural network modeling in cross-cultural research: A comparison with multiple regression. Organizational Research Methods, 7(4), 389–399.

    Article  Google Scholar 

  • Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response variables with an application to 401(k) plan participation rates. Journal of Applied Econometrics, 11(6), 619–632.

    Article  Google Scholar 

  • Putka, D. J., Beatty, A. S., & Reeder, M. C. (2018). Modern prediction methods: New perspectives on a common problem. Organizational Research Methods, 21(3), 689–732.

    Article  Google Scholar 

  • Sapp, S., van der Laan, M. J., & Canny, J. (2014). Subsemble: an ensemble method for combining subset-specific algorithm fits. Journal of Applied Statistics, 41(6), 1247–1259.

    Article  MathSciNet  PubMed  Google Scholar 

  • Shapley, L. S. (1997). A value for n-person games. Contribution to the theory of games II (1953) 307–317. In H. W. Kuhn (Ed.), Classics in game theory. Princeton: Princeton University Press.

  • Shrestha, Y. R., Fang He, V., Puranam, P., & von Krogh, G. (2021). Algorithm supported induction for building theory: How can we use prediction models to theorize? Organization Science, 32(3), 856–880.

    Article  Google Scholar 

  • Song, X.-H., & Lee, S.-Y. (2003). Full maximum likelihood estimation of polychoric and polyserial correlations with missing data. Multivariate Behavioral Research, 38(1), 57–79.

    Article  PubMed  Google Scholar 

  • Starbuck, W. H. (2016). 60th anniversary essay: How journals could improve research practices in social science. Administrative Science Quarterly, 61(2), 165–183.

    Article  Google Scholar 

  • Steel, P., Beugelsdijk, S., & Aguinis, H. (2021). The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews. Journal of International Business Studies, 52(1), 23–44.

    Article  Google Scholar 

  • van Witteloostuijn, A. (2020). New-day statistical thinking: A bold proposal for a radical change in practices. Journal of International Business Studies, 51(2), 274–278.

    Article  Google Scholar 

  • van Witteloostuijn, A., & Kolkman, D. A. (2019). Is firm growth random? A machine learning perspective. Journal of Business Venturing Insights, 11, e00107.

    Article  Google Scholar 

  • Veiga, J. F., Lubatkin, M., Calori, R., Very, P., & Tung, Y. A. (2000). Using neural network analysis to uncover the trace effects of national culture. Journal of International Business Studies, 31(2), 223–238.

    Article  Google Scholar 

  • Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228–1242.

    Article  MathSciNet  CAS  Google Scholar 

  • Wenzel, R., & van Quaquebeke, N. (2018). The double-edged sword of big data in organizational and management research: A review of opportunities and risks. Organizational Research Methods, 21(3), 548–591.

    Article  Google Scholar 

  • Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelner, B. A. (2009). Using simulation to interpret results from logit, probit, and other nonlinear models. Strategic Management Journal, 30(12), 1335–1348.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our editor, Herman Aguinis, for his excellent editorial guidance, and the anonymous reviewers for their careful reading and detailed comments. Standard disclaimers apply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas Bosma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accepted by Herman Aguinis, Area Editor, 29 November 2023. This article has been with the authors for two revisions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 285 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosma, B., van Witteloostuijn, A. Machine learning in international business. J Int Bus Stud (2024). https://doi.org/10.1057/s41267-024-00687-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1057/s41267-024-00687-6

Keywords

Navigation