Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T16:10:13.780Z Has data issue: false hasContentIssue false

Natromelansonite, Na3Zr[Si7AlO19]⋅4–5H2O, a new member of the rhodesite mero-plesiotype series from Mont Saint-Hilaire, Quebec, Canada

Published online by Cambridge University Press:  15 January 2024

Inna Lykova*
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada
Ralph Rowe
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada
Glenn Poirier
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada
Henrik Friis
Affiliation:
Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway
Stephanie Barnes
Affiliation:
Canadian Conservation Institute, 1030 Innes Road, Ottawa, Ontario K1B 4S7, Canada
*
Corresponding author: Inna Lykova; Email: ilykova@nature.ca

Abstract

Natromelansonite, Na3Zr[Si7AlO19]⋅4–5H2O, was found at the Poudrette (Demix) quarry, Mont Saint-Hilaire, Quebec, Canada in a highly altered pegmatite together with a clay mineral, steacyite, polylithionite and rhodochrosite. It occurs as an outer zone of tabular crystals to 0.1 × 0.3 × 1 mm in size flattened on (001). The inner zone is made of melansonite. The mineral is grey with white powder colour and vitreous lustre. The cleavage is parallel to {010}, perfect. The Mohs hardness is 3.5. The mineral has green fluorescence under short-wave ultraviolet light. The Dcalc is 2.31 g/cm3. The infrared spectrum is reported. The composition (wt.%, average of 8 analyses) is Na2O 10.08, K2O 1.72, CaO 0.24, BaO 0.32, MnO 0.10, Al2O3 6.86, Y2O3 0.35, Yb2O3 0.55, SiO2 56.23, ZrO2 14.78, H2O 9.52, total 100.75. The empirical formula calculated on the basis of O = 23 apfu and H = 8 apfu is Na(□Na0.38Ca0.02Mn0.01)2(Na0.70K0.28Ba0.02)Σ1.00(Zr0.91Y0.02Yb0.02)Σ0.95(Si7.08Al1.02)Σ8.10O19⋅4H2O. The mineral is monoclinic, P21/m, a = 6.5156(3) Å, b = 24.061(1) Å, c = 6.9759(6) Å, β = 90.453(5)° and V = 1093.61(9) Å3 and Z = 2. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 12.02(100)(020), 6.97(89)(001), 6.51(39)(100), 3.416(37)(160), 3.062(42)($\bar{1}$61, 102, 161 and $\bar{1}$12), 3.018(38)(230 and 042), 2.864(40)(240 and 132). The crystal structure, solved and refined from single-crystal X-ray diffraction data (R1 = 0.042), is based on a double sheet of tetrahedra (T) and a sheet of octahedra (O) that alternate along the [010] direction forming a TOT structure typical for members of the rhodesite mero-plesiotype series.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey V Krivovichev

References

Armstrong, J.T. (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and Phi-Rho-Z procedures. Pp. 239246 in: Proceedings of Microbeam Analysis Society (Newbury, D.E., editor). San Francisco Press, USA.Google Scholar
Cadoni, M. and Ferraris, G. (2011) Minerals as materials – silicate sheets based on mixed rings as modules to build heteropolyhedral microporous frameworks. Pp. 153162 in: Minerals As Advanced Materials II (Krivovichev, S.V., editor). Springer Berlin Heidelberg, Berlin, Heidelberg.10.1007/978-3-642-20018-2_14CrossRefGoogle Scholar
Chao, G.Y. (1978) Monteregianite, a new hydrous sodium potassium yttrium silicate mineral from Mont St-Hilaire, Quebec. The Canadian Mineralogist, 16, 561565.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species. Springer, Dordrecht, Germany. 1726 pp.10.1007/978-94-007-7128-4CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer Cham, Switzerland.10.1007/978-3-319-25349-7CrossRefGoogle Scholar
Dorfman, M.D. and Chigarov, M.I. (1979) Hydrodelhayelite, a product of supergene alteration of delhayelite. Novye dannye o mineralakh. Nauka, SSSR, 28, 172175.Google Scholar
Ferraris, G. and Gula, A. (2005) Polysomatic aspects of microporous minerals – heterophyllosilicates, palysepioles and rhodesite-related structures. Pp. 69104 in: Micro- and Mesoporous Mineral Phases (Giovanni Ferraris and Stefano Merlino, editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.10.1515/9781501509513-003CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Ghose, S., Sen Gupta, P.K. and Campana, C.F. (1987) Symmetry and crystal structure of montregianite, Na4K2Y2Si16O38⋅10H2O, a double-sheet silicate with zeolitic properties. American Mineralogist, 72, 365374.Google Scholar
Gore, T.E. and McDonald, A.M. (2023) Melansonite, (Na,□)□2KZrSi8O19⋅5H2O, a new member of the rhodesite group, from Mont Saint-Hilaire, Québec, Canada: Characterization, crystal-structure determination, and origin. The Canadian Journal of Mineralogy and Petrology, 61, 38740010.3749/2000114CrossRefGoogle Scholar
Hawthorne, F.C., Sokolova, E. and Uvarova, Y.A. (2019) A structure hierarchy for silicate minerals: Sheet silicates. Mineralogical Magazine, 83, 355.CrossRefGoogle Scholar
Horvath, L., Gault, R.A., Pfenninger-Horvath, E. and Poirier, G. (2019) Mont Saint-Hilaire: History, Geology, Mineralogy. The Canadian Mineralogist Special Publication 14. Mineralogical Association of Canada, Canada.Google Scholar
Lykova, I., Rowe, R., Poirier, G., Friis, H. and Barnes, S. (2024) Natromelansonite, IMA 2023-076. CNMNC Newsletter 76. Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2023.89Google Scholar
Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Sharygin, V.V. and Pushcharovsky, D.Y. (2009) Crystal chemistry of delhayelite and hydrodelhayelite. Doklady Earth Sciences, 428, 12161221.10.1134/S1028334X09070393CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Zadov, A.E. and Pushcharovsky, D.Y. (2011) Fivegite K4Ca2[AlSi7O17(O2−xOHx)][(H2O)2−xOH]Cl: A new mineral species from the Khibiny alkaline pluton of the Kola Peninsula in Russia [sic, should be OHx]. Geology of Ore Deposits, 53, 591603.10.1134/S1075701511070154CrossRefGoogle Scholar
Rowe, R. (2009) New statistical calibration approach for Bruker AXS D8 Discover microdiffractometer with Hi-Star detector using GADDS software. Powder Diffraction, 24, 263271.10.1154/1.3193683CrossRefGoogle Scholar
Sahama, T.G. and Hytönen, K. (1959) Delhayelite, a new silicate from the Belgian Congo. Mineralogical Magazine and Journal of the Mineralogical Society, 32, 69.10.1180/minmag.1959.032.244.02CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Supplementary material: File

Lykova et al. supplementary material

Lykova et al. supplementary material
Download Lykova et al. supplementary material(File)
File 343.9 KB