Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T20:19:38.836Z Has data issue: false hasContentIssue false

Mn–Fe-rich genthelvite from pegmatites associated with the Madeira Sn–Nb–Ta deposit, Pitinga, Brazil: new constraints on the magmatic-hydrothermal transition in the albite-enriched granite system

Published online by Cambridge University Press:  13 February 2024

Ingrid W. Hadlich*
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
Artur C. Bastos Neto
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
Vitor P. Pereira
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
Nilson F. Botelho
Affiliation:
Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
Luiz H. Ronchi
Affiliation:
Centro de Engenharias, Universidade Federal de Pelotas, Praça Domingos Rodrigues 2, 96010-440 Pelotas, RS, Brazil
Harold G. Dill
Affiliation:
Gottfried Wilhelm Leibniz University, Welfengarten 1, D-30167 Hannover, Germany
*
Corresponding author: Ingrid W. Hadlich; Email: ingrid.hadlich@ufrgs.br

Abstract

Genthelvite from pegmatite veins hosted by the albite-enriched granite (ca.1.8 Ga) corresponding to the Sn–Nb–Ta (F, REE, Li, Zr, U, Th) Madeira deposit, Amazonas, Brazil was studied. Genthelvite, the exclusive Be-bearing mineral within the deposit, occurs as massive crystals of up to 4.7 cm in size. Compositions are homogeneous within individual crystals, although there is moderate variation in the overall composition reflecting relatively limited substitutions within the helvine–genthelvite–danalite solid-solution series, with relatively high Zn contents (36.96 to 49.45 wt.% ZnO), lower Mn contents (0.61 to 3.03 wt.% MnO), and variable Fe contents (2.10 to 10.94 wt.% FeO), completing an existing compositional gap in this system. Genthelvite formed in an alkaline and subaluminous environment, under stable conditions within the late-evolved fluids, at relatively high temperature (>400°C), in a reducing environment. The extremely high concentration of fluorine in the magma and the crystallisation of magmatic galena resulted in an effective reduction of H2S fugacity. This resulted in the stabilisation of genthelvite during the transition from the late magmatic to early hydrothermal stages of the albite-enriched granite evolution. The variability in Fe content within genthelvite is associated primarily with localised variations in the mineral assemblage (e.g. the presence of riebeckite and polylithionite). Genthelvite was altered by low-temperature aqueous fluids rich in F which resulted in the incorporation of Fe, Mn, Mg, Pb, Ba, Na, K, U and REE into the Zn2+ structural site and the allocation of excess Si, Al, Ti and P in the IVSi and IVBe structural sites. The substantial content of U and REE substituting for Zn, together with Si substituting for Be, is charge balanced by the presence of vacancies at the A site.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: František Laufek

References

Almeida, F.F.M., Hasui, Y., Brito Neves, B.B. and Fuck, R.A. (1981) Brazilian structural Provinces: an introduction. Earth Sciences Reviews, 17, 129.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.CrossRefGoogle Scholar
Antao, S.M. and Hassan, I. (2010) A two-phase intergrowth in genthelvite from Moint Saint-Hilaire, Quebec. The Canadian Mineralogist, 48, 12171223.CrossRefGoogle Scholar
Bank, H. (1975) Durchsichtiger schleifwuerdiger blauer Willemit vom Mt. St. Hilaire in Kanada. Zeitschrift der Deutsche Gemnologische Gesellschaft, 24, 250256.Google Scholar
Bastos Neto, A.C., Pereira, V.P., Ronchi, L.H., Lima, E.F. and Frantz, J.C. (2009) The worldclass Sn, Nb, Ta, F (T, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga Mining District, Amazonas State, Brazil. The Canadian Mineralogist, 47, 13291357.CrossRefGoogle Scholar
Bastos Neto, A.C., Pereira, V.P., Pires, A.C., Barbanson, L. and Chauvet, A. (2012) Fluorine-rich xenotime from the Nb-Ta-Sn Madeira world-class deposit associated with the albite-enriched granite at Pitinga, Amazonia, Brazil. The Canadian Mineralogist, 50, 10191032.CrossRefGoogle Scholar
Bastos Neto, A.C., Ferron, T.M.M., Chauvet, A., Chemale, F., Lima, E.F., Barbanson, L. and Costa, C.F.M. (2014) U-Pb dating of the Madeira Suite and structural control of the albite-enriched granite at Pitinga (Amazônia, Brazil): evolution of the A-type magmatism and implications for the genesis of the Madeira Sn-Ta-Nb (REE, cryolite) world-class deposit. Precambrian Research, 243, 181196.CrossRefGoogle Scholar
Bilal, E. (2013) Geochimie et conditions de cristallisation des mineraux du groupe de l'helvite, Geonomos, 2, 113.Google Scholar
Bilal, E. and Fonteilles, M. (1988) Conditions d'apparition respectives de l'helvite, de la phénacite et du béryl dans l'environnement granitique: exemple du massif de Sucuri (Brésil). Comptes Rendus de l'Académie des Sciences, 307, 273276.Google Scholar
Bollinberg, H. and Petersen, O.V. (1967) Genthelvite from the Ilimaussaq alkaline intrusion, south Greenland. Medelelser om Gronland, 181(4), 19.Google Scholar
Botelho, N.F. (1992) Les ensembles granitiques subalcalins a peralumineux mineralisés em Sn et In de la sous-province Paraná, état de Goiás, Brésil. PhD dissertation, Université de Paris VI, France.Google Scholar
Bulakh, A.G. and Frank-Kamenetsky, V.A. (1961) Geological excursion in the vicinity of Pitkyaranta Publishing house of the KASSR, Petrozavodsk, 108 pp. [in Russian].Google Scholar
Burt, D.M. (1980) The stability of danalite Fe4Be3(SiO4)S. American Mineralogist, 65, 355360.Google Scholar
Burt, D.M. (1988) Stability of genthelvite, Zn4(BeSiO4)3S: an exercise in chalcophilicity using exchange operators. American Mineralogist, 73, 13841394.Google Scholar
Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Pp. 405444 in: Beryllium: Mineralogy, petrology, and geochemistry, Vol. 50 (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Virginia.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Cianciulli, J.C. and Verbeek, E.R. (2003) Genthelvite from Ogdensburg, New Jersey. The Picking Table, 44(2), 2326.Google Scholar
Clark, A.M. and Fejer, E.E. (1976) Zoned genthelvite from the Cairngorm Mountains, Scotland. Mineralogical Magazine, 40, 637639.CrossRefGoogle Scholar
Costi, H.T. (2000) Petrologia de granitos alcalinos com alto flúor mineralizados em metais raros: o exemplo do Albita-granito da Mina Pitinga, Amazonas, Brasil. PhD dissertation, Universidade Federal do Pará, Brazil.Google Scholar
Costi, H.T., Dall'agnoll, R. and Moura, C.A.V. (2000) Geology and Pb-Pb Geochronology of Paleoproterozoic volcanic and granitic rocks of Pitinga province, Amazonian craton, northern Brazil. International Geology Review, 42, 832849.CrossRefGoogle Scholar
Costi, H.T., Borges, R.M. and Dall'agnoll, R. (2005) Depósitos de estanho da mina Pitinga, estado do Amazonas. Pp. 391-475 in: Caracterização de depósitos minerais em distritos mineiros da Amazônia (Marini, O.J., Queiroz, E.T. and Ramos, B.W., editors). DNPM-CT/MINERAL-ADIMB, Brasília.Google Scholar
Costi, H.T., Dall'Agnol, R., Pichavant, M. and Ramo, O.T. (2009) The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian craton, Brazil: petrography, mineralogy and crystallization processes. The Canadian Mineralogist, 47, 13011327.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A., Wise, W.S. and Zussman, J. (2004) The Rock-forming Minerals Series: framework silicates (silica minerals, feldspathoids and the zeolites). The Geological Society, London, 988 pp.Google Scholar
Dill, H.G. (2016) The CMS classification scheme (Chemical composition-Mineral assemblage-Structural geology)-linking geology to mineralogy of pegmatitic and aplitic rocks. Journal of Mineralogy and Geochemistry, 193, 231263.Google Scholar
Dolejs, D. and Baker, D.R. (2007) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O to 100 MPa 2: differentiation paths of fluorosilicic magmas in hydrous systems. Journal of Petrology, 48, 807828.CrossRefGoogle Scholar
Dunn, P.J. (1976) Genthelvite and the helvine group. Mineralogical Magazine, 40, 627636.CrossRefGoogle Scholar
Dushin, V.A., Prokopchuk, D.I., Koz'min, V.S., Zhuklin, E.A. and Trutnev, A.K. (2018) Geology and mineral resources of the Mankhambovsky Block (subpolar Urals). News of the Ural State Mining University, 3, 1933.CrossRefGoogle Scholar
Es'kova, E.M. (1957) Genthelvite from alkaline pegmatites. Doklady Akademii Nauk. 153, 681–683 [in Russian].Google Scholar
Ferron, J.M.T.M., Bastos Neto, A.C., Lima, E.F., Costi, H.T., Moura, C.A.V., Prado, M. and Galarza, M.A. (2006) Geologia e cronologia Pb-Pb de rochas graníticas e vulcânicas ácidas a intermediárias paleoproterozóicas da Província de Pitinga, Cráton Amazônico. Revista Brasileira de Geociências, 36, 499512.CrossRefGoogle Scholar
Finch, A.A. (1990) Genthelvite and willemite, zinc minerals associated with alkaline magmatism from the Motzfeldt centre, south Greenland. Mineralogical Magazine, 54, 407412.CrossRefGoogle Scholar
Freitas, M.E. (2000) A evolução dos greisens e mineralização estanífera no Morro do Laranjinha – Maciço Granítico Mangabeira – Goiás. PhD dissertation, Universidade de Brasília, Brazil.Google Scholar
Glass, J.J., Jahns, R.H. and Stevens, R.H. (1944) Helvite and danalite from New Mexico and the helvite group. American Mineralogist, 29, 163191.Google Scholar
Grew, E.S. (2002) Mineralogy, petrology and geochemistry of beryllium: An introduction and list of beryllium minerals. Pp. 487549 in: Beryllium: Mineralogy, Petrology, and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, Vol. 50. Mineralogical Society of America, Virginia, USA.CrossRefGoogle Scholar
Haapala, I. and Lukkari, S. (2005) Petrological and geochemical Evolution of the Kymi stock, a topaz granite cupola within the Wiborg rapakivi batholith, Finland. Lithos, 80, 347362.CrossRefGoogle Scholar
Haapala, I. and Ojanperã, P. (1972) Genthelvite-Bearing Greisens in southern Finland. Geological Survey of Finland Bulletin, 259.Google Scholar
Hadlich, I.W., Bastos Neto, A.C., Botelho, N.F. and Pereira, V.P. (2019) The thorite mineralization in the Madeira Sn-Nb-Ta world-class deposit (Pitinga, Brazil), Ore Geology Reviews, 105, 445-466.CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1985) The crystal structure of helvite group minerals, (Mn, Fe, Zn)8(Be6Si6O24)S2. American Mineralogist, 70, 186192.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Horbe, M.A., Horbe, A.C., Costi, H.T. and Teixeira, J.T. (1991) Geochemical characteristics of cryolite-tin-bearing granites from the Pitinga mine, northwestern Brazil – a review, Journal of Geochemical Exploration, 40, 227-249.CrossRefGoogle Scholar
Kingsbury, A.W.G. (1961) Beryllium minerals in Cornwall and Devon: helvine, genthelvite, and danalite. Mineralogical Magazine, 32, 921940.CrossRefGoogle Scholar
Kudrin, V.S. (1978) Rare metal alkaline quartz-albite-microcline metasomatites (qualmites) of zones of regional metamorphism (in Russian). Pp. 183194 in: Metasomatism and ore deposition (Korzhinskii, D.S., editor). Nauka Press, Moscow.Google Scholar
Langhof, J., Holtstam, D. and Gustafsson, L. (2000) Chiavennite and zoned genthelvite-helvite as late-stage minerals of the Proterozoic LCT pegmatites at Utö, Stockholm, Sweden. GFF, 122, 207212.CrossRefGoogle Scholar
Larsen, A.O. (1988) Helvite group minerals from syenite pegmatites in the Oslo Region, Norway. Norsk Geologisk Tidsskrift, Report, 68.Google Scholar
Leavens, P.B., Zullo, J. and Verbeek, E. (2009) A complex, genthelvite-bearing skarn from the Passaic pit, Sterling Hill mine, Ogdensburg, New Jersey. Axis, 5, 126.Google Scholar
Lengler, H.F. (2016) Pegmatitos do albita granito Madeira: avaliação do minério para fins de beneficiamento. Monographe, Universidade Federal do Rio Grande do Sul, Brazil.Google Scholar
Lenharo, S.L.R. (1998) Evolução magmática e modelo metalogenético dos granitos mineralizados da região de Pitinga, Amazonas, Brasil. PhD dissertation, Universidade de São Paulo, Brazil.Google Scholar
Lenharo, S.L.R., Pollard, P.J. and Born, H. (2003) Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil, Lithos, 66, 37-61.CrossRefGoogle Scholar
Lunts, A.J. and Saldau, E.P. (1963) Genthelvite from pegmatites on the Kola peninsula (in Russian). Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 92, 8184.Google Scholar
Martin, R.F. (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environmental. Lithos, 91, 125136.CrossRefGoogle Scholar
Metcalf-Johnson, J. (1977) Willemite from the Ilimaussaq alkaline intrusion. Mineralogical Magazine, 41, 7175.CrossRefGoogle Scholar
Minuzzi, O.R.R. (2005) Gênese e evolução da mineralização de criolita, pirocloro e columbita da subfacies albita granito de núcleo, Mina Pitinga, Amazonas, Brasil. PhD dissertation, Universidade Federal do Rio Grande do Sul, Brazil.Google Scholar
Minuzzi, O.R.R., Bastos Neto, A.C., Pereira, V.P. and Flores, J.A.A. (2006) The massive cryolite deposit and the disseminated ore of cryolite from the Pitinga mine (Amazon, Brazil). Revista Brasileira de Geociências, 36, 104123.CrossRefGoogle Scholar
Miranda, A.C.R. (2018) Caracterização da mineralização de estanho e índio do maciço Sucuri, província estanífera de Goiás. Master dissertation, Universidade de Brasília, Brazil.Google Scholar
Morgan, W.C. (1967) Genthelvite and bertrandite from the Cairngorm Mountains, Scotland. Mineralocal Magazine, 36, 6063.Google Scholar
Oftedal, I. and Saebø, P.C. (1963) Classification of some Norwegian members of the helvine group. Norsk Geologisk Tidsskrift, 43, 405409.Google Scholar
Paludo, C.M., Bastos Neto, A.C., Pereira, V.P. and Botelho, N.F. (2018) Mineralogia e geoquímica de pegmatitos ricos em ETR, F e metais alcalinos associados à fácies albita granito no depósito de Sn-Nb-Ta-(F, ETR, U, Th) Madeira (mina Pitinga, AM, Brasil). Pesquisas em Geociências, 45, 128.CrossRefGoogle Scholar
Perez, J.-P., Dusausov, Y., Babkine, J. and Pagel, M. (1990) Mn zonation and fluid inclusions in genthelvite from the Taghouaji complex (Aïr Mountains, Niger). American Mineralogist, 75, 909914.Google Scholar
Pierosan, R., Lima, E.F., Nardi, L.V.S., Bastos Neto, A.C., Campos, C.P., Jarvis, K., Ferron, J.M.T.M. and Prado, M. (2011) Geochemistry of Paleoproterozoic volcanic rocks of the Iricoume Group, Pitinga Mining District, Amazonian craton, Brazil. International Geology Review, 53, 946976.CrossRefGoogle Scholar
Pulz, G.M., Cunha, M.C.L. and Formoso, M.L.L. (1998) Revisão sobre a geoquímica do berílio nos materiais naturais. Pesquisas, 25, 2940.Google Scholar
Raimbault, L. and Bilal, E. (1993) Trace-element contents of helvite-group minerals from metasomatic albitites and hydrothermal veins at Sucuri, Brazil and Dajishan, China. The Canadian Mineralogist, 31, 119127.Google Scholar
Ronchi, F.C., Althoff, F.J., Bastos Neto, A.C. and Dill, H.G. (2019) Structural control of REE-pegmatites associated with the world-class Sn-Nb-Ta-cryolite deposit at the Pitinga mine, Amazonas, Brazil. Pesquisas em Geociências, 46, 114.Google Scholar
Ronchi, L.H., Bastos Neto, A.C., Gedoz, S.C., Weber, M.L., Pereira, V.P. and Andrek, M. (2011) A transição magmático-hidrotermal registrada por inclusões fluidas no albita-granito de núcleo, Mina Pitinga, Amazonas. Pp. 7188 in: Contribuições à metalogenia do Brasil, (Frantz, J.C., Charão, J.M. and Jost, H., editors). Serviço Geológico do Brasil, Porto Alegre, Brazil.Google Scholar
Rudnick, R.L. and Gao, S. (2005) Composition of the continental crust. Pp. 161 in: The Crust, Vol. 3 (Rudnick, R.L., editor). Treatise on Geochemistry, Elsevier-Pergamon, Oxford.Google Scholar
Ryback, G., Clark, A.M. and Stanley, C.J. (1998) Re-examination of the A.W.G. Kingsbury Collection of British Minerals at the Natural History Museum, London. Geological Curator, 6, 317322.CrossRefGoogle Scholar
Santos, J.O.S., Hartmann, L.A., Gaudete, H.E., Groves, D.I., McNaughton, N.J. and Fletcher, L.R.A. (2000) New understanding of the Provinces of Amazon Craton based on Integration of Field Mapping and U-Pb and Sm-Nd geochronology. Gondwana Research, 3, 453488.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Simões, M.S.S., Almeida, M.E., Souza, A.G.H., Silva, B.D.P.B. and Rocha, P.G. (2014) Characterization of the volcanic and hypabyssal rocks of the Paleoproterozoic Iricoumé Group in the Pitinga region and Balbina Lake area, Amazonian craton, Brazil: petrographic distinguishing features and emplacement conditions. Journal of Volcanology and Geothermal Research, 286, 138147.CrossRefGoogle Scholar
Stolnik, D. (2015) Caracterização da xenotima na fácies pegmatítica do albita granito de núcleo, Pitinga (AM). Monography, Universidade Federal do Rio Grande do Sul, Brazil.Google Scholar
Vasil'ev, V.A. (1961) On genthelvite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 90, 571578 [in Russian].Google Scholar
Veiga, J.P. Jr., Nunes, A.C.B., Fernandes, A.S., Amaral, J.E., Pessoa, M.R. and Cruz, S.A.S. (1979) Projeto Sulfetos de Uatumã. Departamento Nacional de Pesquisa Mineral/Serviço Geológico do Brasil, Relatório Final, 7.Google Scholar
Von Knorring, O. and Dyson, P. (1959) An occurrence of genthelvite in the Younger Granite Province of northern Nigeria. American Mineralogist, 44, 12941298.Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Zito, G. and Hanson, S.L. (2017) Genthelvite overgrowths on danalite cores from a pegmatite miarolitic cavity in Cheyenne Canyon, El Paso County, Colorado. The Canadian Mineralogist, 55, 195206.CrossRefGoogle Scholar
Supplementary material: File

Hadlich et al. supplementary material

Hadlich et al. supplementary material
Download Hadlich et al. supplementary material(File)
File 5.5 KB