Skip to main content
Log in

Preparation, Structure, and Electrophysical Properties of Ceramic Samples of (1 – 2x)BiScO3∙(2 – y)xPbTiO3yxPbMg1/3Nb2/3O3 Perovskite Solid Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

Ceramic samples with compositions along the (1 – 2x)BiScO3·(2 – y)xPbTiO3yxPbMg1/3Nb2/3O3 (y = 1.2, 1.0, 0.9, 0.5) sections in the BiScO3–PbTiO3–PbMg1/3Nb2/3O3 (BS–PT–PMN) system have been characterized by X-ray diffraction and dielectric, piezoelectric, and thermally stimulated depolarization current measurements. The materials with 1 – x ≲ 0.5 have been shown to consist of perovskite solid solutions. With increasing BS content, the symmetry of the solid solutions rises from tetragonal to cubic. In the intermediate composition region (morphotropic region (MR)), the samples consist of a mixture of solid solutions differing in symmetry. We have located the MR boundaries and examined the effect of composition on the dielectric and piezoelectric properties of the solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.

REFERENCES

  1. Handbook of Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Ye, Z.-G., Ed., New York: Woodhead, 2008.

  2. Advanced Piezoelectric Materials. Science and Technology, Uchino, K., Ed., New York: Woodhead, 2017, 2nd ed.

    Google Scholar 

  3. Kania, A., Slodczyk, A., and Ujma, Z., Flux growth and characterization of (1 – x)PbMg1/3Nb2/3O3xPbTiO3 single crystals, J. Cryst. Growth, 2006, vol. 289, pp. 134–139. https://doi.org/10.1016/j.jcrysgro.2005.11.009

    Article  ADS  CAS  Google Scholar 

  4. Stringer, C.J., Donnelly, N.J., Shrout, T.R., Randall, C.A., Alberta, E.F., and Hackenberger, W.S., Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system, J. Am. Ceram. Soc., 2008, vol. 91, no. 6, pp. 1781–1787. https://doi.org/10.1111/j.1551-2916.2008.02298.x

    Article  CAS  Google Scholar 

  5. Bush, A.A., Kamentsev, K.E., Lavrent’ev, A.M., Segalla, A.G., and Fetisov, Yu.K., Dielectric and piezoelectric properties of (1 – 2x)BiScO3·xPbTiO3·xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) solid solutions, Inorg. Mater., 2011, vol. 47, no. 7, pp. 779–785. https://doi.org/10.1134/S0020168511070065

    Article  CAS  Google Scholar 

  6. Bush, A.A., Kamentsev, K.E., Bekhtin, M.A., and Segalla, A.G., Relaxor ferroelectric properties of the (1 – 2x)BiScO3xPbTiO3xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) system, Phys. Solid State, 2017, vol. 59, no. 1, pp. 34–42. https://doi.org/10.1134/S1063783417010036

    Article  ADS  CAS  Google Scholar 

  7. Xie, G., Structure and electrical properties of PMN–BS–PT piezoelectric ceramics, Symp. on Piezoelectricity, Acoustic Waves, and Device Applications, Chengdu, 2017, pp. 537–540. https://doi.org/10.1109/SPAWDA.2017.8340285

    Book  Google Scholar 

  8. Talanov, M.V., Bush, A.A., Kamentsev, K.E., Sirotinkin, V.P., and Segalla, A.G., Structure–property relationships in BiScO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics near the morphotropic phase boundary, J. Am. Ceram. Soc., 2018, vol. 101, no. 2, pp. 683–693. https://doi.org/10.1111/jace.15225

    Article  CAS  Google Scholar 

  9. Spitsin, A.I., Bush, A.A., Kamentsev, K.E., Sirotinkin, V.P., and Talanov, M.V., Preparation, structure, and electrical transport properties of (1 – 2x)BiScO3·xPbTiO3· xPbMg1/3Nb2/3O3 (0 ≤ x ≤ 0.50) ferroelectric ceramics, Tonkie Khim. Tekhnol., 2019, vol. 14, no. 3, pp. 78–89. https://doi.org/10.32362/2410-6593-2019-14-3-78-89

    Article  CAS  Google Scholar 

  10. Noheda, B., Cox, D.E., Shirane, G., Gao, J., and Ye, Z.-G., Phase diagram of the ferroelectric relaxor (1 – x)PbMg1/3Nb2/3O3xPbTiO3, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, p. 054104. https://doi.org/10.1103/PhysRevB.66.054104

    Article  ADS  CAS  Google Scholar 

  11. Eitel, R., Zhang, S., Shrout, T., Randall, C.A., and Levin, I., Phase diagram of the perovskite system (1 ‒ x)BiScO3xPbTiO3, J. Appl. Phys., 2004, vol. 96, pp. 2828–2831. https://doi.org/10.1063/1.1777810

    Article  ADS  CAS  Google Scholar 

  12. Chaigneau, J., Kiat, J.M., Malibert, C., and Bogicevic, C., Morphotropic phase boundaries in (BiScO3)1–x(PbTiO3)x (0.60 < x < 0.75) and their relation to chemical composition and polar order, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, p. 094111. https://doi.org/10.1103/PhysRevB.76.094111

    Article  ADS  CAS  Google Scholar 

  13. Inaguma, Y., Miyaguchi, A., Yoshida, M., Katsumata, T., Shimojo, Y., Wang, R., and Sekiya, T., High-pressure synthesis and ferroelectric properties in perovskite-type BiScO3–PbTiO3 solid solution, J. Appl. Phys., 2004, vol. 95, no. 1, pp. 231–235. https://doi.org/10.1063/1.1629394

    Article  ADS  CAS  Google Scholar 

  14. Bokov, A. and Ye, Z.-G., Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., 2006, vol. 41, pp. 31–52. https://doi.org/10.1142/S2010135X1241010X

    Article  ADS  CAS  Google Scholar 

  15. Kang, B.S. and Park, C.H., Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700°C, J. Appl. Phys., 2003, vol. 84, no. 3, pp. 1904–1911. https://doi.org/10.1063/1.1589595

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Research Instrumentation Center, Moscow Institute of Radio Engineering, Electronics, and Automation, Russian Technological University, supported by the Russian Federation Ministry of Science and Higher Education, agreement no 075-15-2021-689, September 1, 2021.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target, project FSFZ-2022-0007: Foundation of New Youth Laboratories.

A.A. Nogai acknowledges the support from the Ministry of Science and Higher Education of the Republic of Kazakhstan, grant no. AP14972981.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bush.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sysoev, M.A., Bush, A.A., Kamentsev, K.E. et al. Preparation, Structure, and Electrophysical Properties of Ceramic Samples of (1 – 2x)BiScO3∙(2 – y)xPbTiO3yxPbMg1/3Nb2/3O3 Perovskite Solid Solutions. Inorg Mater 59, 1345–1355 (2023). https://doi.org/10.1134/S0020168523120087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523120087

Keywords:

Navigation