Skip to main content
Log in

Electrochemical Synthesis of Rare-Earth Hexaborides in Chloride–Oxide Melts

  • Published:
Inorganic Materials Aims and scope

Abstract

Chloride–oxide melts used in electrosynthesis of calcium and rare-earth borides have been studied by Raman and IR spectroscopies. The results, in combination with analysis of data in the literature, have been used to identify the mechanism underlying the sequential transition of solid lanthanide oxides to an ionic form in molten calcium chloride. Using chronopotentiometry and cyclic voltammetry, we have demonstrated that the boride formation is a two-step process. An overall reaction has been proposed that describes the electrochemical boride synthesis process. The proposed mechanism is consistent with the laws of chemical thermodynamics and allows one to describe the exchange and electrode reactions involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Matkovich, V.I., Boron and Refractory Borides, Heidelberg: Springer, 1977. https://doi.org/10.1007/978-3-642-66620-9

    Book  Google Scholar 

  2. Mengdong, M., Xinyu, Ya., Hong, M., Zhisheng, Zh., Julong, H., and Yanhui, Ch., Nanocrystalline high-entropy hexaboride ceramics enable remarkable performance as thermionic emission cathodes, Fundam. Res., 2022, no. 3, pp. 1–9. https://doi.org/10.1016/j.fmre.2022.04.010

  3. Zhang, W., Zhao, B., Xiang, H., Dai, F.-Z., Wu, S., and Zhou, Y., One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders, J. Adv. Ceram., 2021, vol. 10, no. 1, pp. 62–77. https://doi.org/10.1007/s40145-020-0417-2

    Article  CAS  Google Scholar 

  4. James, T. and Olivia, A., Hexaborides: a review of structure, synthesis and processing, J. Mater. Res. Technol., 2019, vol. 8, no. 6, pp. 6321–6335. https://doi.org/10.1016/j.jmrt.2019.09.041

    Article  CAS  Google Scholar 

  5. Liu, W., Zhang, X., Liu, H., Li, J., Zhou, N., Liu, Y., and Lu, Q., Field emission and electron beam transmission characteristics of microtips array on the (100) plane of single-crystal gadolinium hexaboride ceramic, Ceram. Int., 2022, vol. 48, no. 6, pp. 8395–8402. https://doi.org/10.1016/j.ceramint.2021.12.046

  6. Chao, L., Bao, L., Wei, W., and Tegus, O., A review of recent advances in synthesis, characterization and NIR shielding property of nanocrystalline rare-earth hexaborides and tungsten bronzes, Sol. Energy, 2019, vol. 190, pp. 10–27. https://doi.org/10.1016/j.solener.2019.07.087

    Article  ADS  CAS  Google Scholar 

  7. Schmidt, K.M., Jaime, O., Cahill, J.T., Edwards, D., Misture, S.T., Graeve, O.A., and Vasquez, V.R., Surface termination analysis of stoichiometric metal hexaborides: insights from first-principles and XPS measurements, Acta Mater., 2018, vol. 144, pp. 187–201. https://doi.org/10.1016/j.actamat.2017.10.045

    Article  ADS  CAS  Google Scholar 

  8. Bao, L., Qi, X., Bao, T., and Tegus, O., Structural, magnetic, and thermionic emission properties of multi-functional La1–xCaxB6 hexaboride, J. Alloys Compd., 2018, vol. 731, pp. 332–338. https://doi.org/10.1016/j.jallcom.2017.10.065

    Article  CAS  Google Scholar 

  9. Menaka, Jh., Rajkumar, P., Santanu, Gh., and Ashok, K.G., Vertically aligned nanorods of lanthanum hexaboride with efficient field emission properties, Solid State Commun., 2013, vol. 153, no. 1, pp. 35–39. https://doi.org/10.1016/j.ssc.2012.10.007

    Article  CAS  Google Scholar 

  10. Demishev, S.V., Gilmanov, M.I., Samarin, A.N., Semeno, A.V., Sluchanko, N.E., Samarin, N.A., Bogach, A.V., Shitsevalova, N.Yu., Filipov, V.B., Karasev, M.S., and Glushkov, V.V., Magnetic resonance probing of ground state in the mixed valence correlated topological insulator SmB6, Sci. Rep., 2018, vol. 8, pp. 1–8. https://doi.org/10.1038/s41598-018-25464-y

    Article  CAS  Google Scholar 

  11. Bukatova, G. and Kuznetsov, S., Electrosynthesis of gadolinium hexaboride nanotubes, Electrochem. Commun., 2005, vol. 7, no. 6, pp. 637–641. https://doi.org/10.1016/j.elecom.2005.04.003

    Article  CAS  Google Scholar 

  12. Bukatova, G.A., Kuznetsov, S.A., and Gaune-Eskard, M., Electrochemical synthesis of rare-earth metal (Eu, Nd) borides in molten salts, Russ. J. Electrochem., 2007, vol. 43, no. 8, pp. 929–935. https://doi.org/10.1134/S1023193507080113

    Article  CAS  Google Scholar 

  13. Kushkhov, H., Mukozheva, R., Vindizheva, M., Abazova, A., and Tlenkopachev, M., Electrochemical synthesis of CeB6 nanotubes, J. Mater. Sci. Chem. Eng., 2014, no. 2, pp. 57–62. https://doi.org/10.4236/msce.2014.21010

  14. Wei, W., Mingyong, W., Xuzhong, G., Zhi, W., Dong, W., and Zhancheng, G., Electrochemical conversions of soluble borates to CaB6 with superior optical property in NaCl–CaCl2 melt, J. Electrochem. Soc., 2018, vol. 165, no. 10, pp. 477–483.

    Article  Google Scholar 

  15. Chukhvantsev, D.O., Filatov, E.S., Shurov, N.I., and Rozhentsev, D.A., Synthesis of lanthanum hexaboride in a chloride–oxide melt, Inorg. Mater., 2021, vol. 57, no. 1, pp. 14–19. https://doi.org/10.1134/S0020168521010039

    Article  CAS  Google Scholar 

  16. Chukhvantsev, D.O., Shurov, N.I., Nikitina, E.V., and Filatov, E.S., Synthesis of gadolinium hexaboride in a chloride–oxide melt, Rasplavy, 2022, no. 6, pp. 651–660. https://doi.org/10.31857/S0235010622060032

  17. Chukhvantsev, D., Filatov, E., and Shurov, N., Electrochemical synthesis and characteristics of calcium hexaboride doped with Ln (Ln = Sm, Eu), Mater. Sci. Eng., B, 2022, vol. 284, pp. 1–6. https://doi.org/10.1016/j.mseb.2022.115917

    Article  CAS  Google Scholar 

  18. Chernov, Ya.B., Filatov, E.S., Zakiryanova, I.D., Karimov, K.R., and Antonov, B.D., Phase relations in melts of the CaCl2–B2O3–CaO system, Rasplavy, 2015, no. 7, pp. 58–66.

  19. Chernov, Y., Filatov, E., Shurov, N., Smolenski, V., and Tkachev, N., Synthesis of calcium hexaboride by electrolysis of molten salt, Metall. Mater. Trans. B, 2019, no. 4, pp. 1745–1751. https://doi.org/10.1007/s11663-019-01626-9

  20. Ren, M., Lin, J.H., Dong, Y., Yang, L.Q., Su, M.Z., and You, L.P., Structure and phase transition of GdBO-3, Chem. Mater., 1999, vol. 11, no. 6, pp. 1576–1580. https://doi.org/10.1021/cm990022o

    Article  CAS  Google Scholar 

  21. Szczeszak, A., Grzyb, T., Lis, S., and Wiglusz, R.J., Revision of structural properties of GdBO3 nanopowders doped with Eu3+ ions through spectroscopic studies, Dalton Trans., 2012, vol. 41, no. 19, pp. 5824–5831. https://doi.org/10.1039/c2dt12154a

    Article  CAS  PubMed  Google Scholar 

  22. Uchida, K., Cathodic behavior in the electrodeposition of LaB6, Surf. Technol., 1978, no. 7, pp. 137–143.

  23. Baraboshkin, A.N., Elektrokristallizatsiya metallov iz rasplavlennykh solei (Electrocrystallization of Metals from Molten Salts), Moscow: Nauka, 1976, p. 380.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Chukhvantsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukhvantsev, D.O., Shurov, N.I., Zakiryanova, I.D. et al. Electrochemical Synthesis of Rare-Earth Hexaborides in Chloride–Oxide Melts. Inorg Mater 59, 1356–1362 (2023). https://doi.org/10.1134/S0020168523120038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523120038

Keywords:

Navigation