Skip to main content
Log in

Azobenzene-based ultrathin peptoid nanoribbons for the potential on highly efficient artificial light-harvesting

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of artificial light-harvesting systems based on long-range ordered ultrathin organic nanomaterials (i.e., below 3 nm), which were assembled from stimuli-responsive sequence-controlled biomimetic polymers, remains challenging. Herein, we report the self-assembly of azobenzene-containing amphiphilic ternary alternating peptoids to construct photo-responsive ultrathin peptoids nanoribbons (UTPNRs) with a thickness of ~2.3 nm and the length in several micrometers. The pendants hydrophobic conjugate stacking mechanism explained the formation of one-dimensional ultrathin nanostructures, whose thickness was highly dependent on the length of side groups. The photo-isomerization of azobenzene moiety endowed the aggregates with a reversible morphology transformation from UTPNRs to spherical micelles (46.5 nm), upon the alternative irradiation with ultraviolet and visible light. Donor of 4-(2-hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole (NBD) and acceptor of rhodamine B (RB) were introduced onto the hydrophobic and hydrophilic regions, respectively, to generate photo-controllable artificial light-harvesting systems. Compared with the spheres-based systems, the obtained NBD-UTPNRs@RB composite proved a higher energy transfer efficiency (90.6%) and a lower requirement of RB acceptors in water. A proof-of-concept use as fluorescent writable ink demonstrated the potential of UTPNRs on information encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z. Nature, 2016, 534: 69–74

    Article  CAS  PubMed  Google Scholar 

  2. Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Nat Rev Chem, 2023, 7: 91–105

    Article  PubMed  Google Scholar 

  3. Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee R, Scholes GD. Chem Rev, 2017, 117: 249–293

    Article  CAS  PubMed  Google Scholar 

  4. Huokko T, Ni T, Dykes GF, Simpson DM, Brownridge P, Conradi FD, Beynon RJ, Nixon PJ, Mullineaux CW, Zhang P, Liu LN. Nat Commun, 2021, 12: 3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Domínguez-Martín MA, Sauer PV, Kirst H, Sutter M, Bina D, Greber BJ, Nogales E, Polívka T, Kerfeld CA. Nature, 2022, 609: 835–845

    Article  PubMed  Google Scholar 

  6. Li Q, Orcutt K, Cook RL, Sabines-Chesterking J, Tong AL, Schlau-Cohen GS, Zhang X, Fleming GR, Whaley KB. Nature, 2023, 619: 300–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao M, Wang Z, Lyu M, Luo B, Wang S, Liu G, Cheng HM, Wang L. AdvMater, 2019, 31: 1801369

    Google Scholar 

  8. Kundu S, Patra A. Chem Rev, 2017, 117: 712–757

    Article  CAS  PubMed  Google Scholar 

  9. Garain S, Garain BC, Eswaramoorthy M, Pati SK, George SJ. Angew Chem Int Ed, 2021, 60: 19720–19724

    Article  CAS  Google Scholar 

  10. Song Q, Goia S, Yang J, Hall SCL, Staniforth M, Stavros VG, Perrier S. J Am Chem Soc, 2021, 143: 382–389

    Article  CAS  PubMed  Google Scholar 

  11. Du C, Li Z, Zhu X, Ouyang G, Liu M. Nat Nanotechnol, 2022, 17: 1294–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haedler AT, Kreger K, Issac A, Wittmann B, Kivala M, Hammer N, Köhler J, Schmidt HW, Hildner R. Nature, 2015, 523: 196–199

    Article  CAS  PubMed  Google Scholar 

  13. Zang L. Acc Chem Res, 2015, 48: 2705–2714

    Article  CAS  PubMed  Google Scholar 

  14. Garnett E, Mai L, Yang P. Chem Rev, 2019, 119: 8955–8957

    Article  CAS  PubMed  Google Scholar 

  15. Jia C, Lin Z, Huang Y, Duan X. Chem Rev, 2019, 119: 9074–9135

    Article  CAS  PubMed  Google Scholar 

  16. Tian J, Zhang Y, Du L, He Y, Jin XH, Pearce S, Eloi JC, Harniman RL, Alibhai D, Ye R, Phillips DL, Manners I. Nat Chem, 2020, 12: 1150–1156

    Article  CAS  PubMed  Google Scholar 

  17. Kim K, Lee S, Nam J, Joo M, Mikladal B, Zhang Q, Kauppinen EI, Jeon I, An S. Adv Funct Mater, 2023, 33: 2213374

    Article  CAS  Google Scholar 

  18. Chen J, Yu C, Shi Z, Yu S, Lu Z, Jiang W, Zhang M, He W, Zhou Y, Yan D. Angew Chem Int Ed, 2015, 54: 3621–3625

    Article  CAS  Google Scholar 

  19. Shao Q, Zhang S, Hu Z, Zhou Y. Angew Chem Int Ed, 2020, 59: 17125–17129

    Article  CAS  Google Scholar 

  20. Sternhagen GL, Gupta S, Zhang Y, John V, Schneider GJ, Zhang D. J Am Chem Soc, 2018, 140: 4100–4109

    Article  CAS  PubMed  Google Scholar 

  21. Tsai E, Gallage Dona HK, Tong X, Du P, Novak B, David R, Rick SW, Zhang D, Kumar R. Macromolecules, 2022, 55: 5197–5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knight AS, Zhou EY, Francis MB, Zuckermann RN. Adv Mater, 2015, 27: 5665–5691

    Article  CAS  PubMed  Google Scholar 

  23. Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Chem Rev, 2016, 116: 1753–1802

    Article  CAS  PubMed  Google Scholar 

  24. Robertson EJ, Battigelli A, Proulx C, Mannige RV, Haxton TK, Yun L, Whitelam S, Zuckermann RN. Acc Chem Res, 2016, 49: 379–389

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, Cai B, Yang W, Chen CL. Chem Rev, 2021, 121: 14031–14087

    Article  CAS  PubMed  Google Scholar 

  26. Mannige RV, Haxton TK, Proulx C, Robertson EJ, Battigelli A, Butterfoss GL, Zuckermann RN, Whitelam S. Nature, 2015, 526: 415–420

    Article  CAS  PubMed  Google Scholar 

  27. Cai B, Li Z, Chen CL. Acc Chem Res, 2021, 54: 81–91

    Article  CAS  PubMed  Google Scholar 

  28. Peng G, Jin H, Liu F, Yang X, Sui P, Lin S. Sci China Chem, 2022, 65: 2444–2449

    Article  CAS  Google Scholar 

  29. Jin H, Ding YH, Wang M, Song Y, Liao Z, Newcomb CJ, Wu X, Tang XQ, Li Z, Lin Y, Yan F, Jian T, Mu P, Chen CL. Nat Commun, 2018, 9: 270

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiao F, Wu X, Jian T, Zhang S, Jin H, He P, Chen C, De Yoreo JJ. Angew Chem IntEd, 2019, 58: 12223–12230

    Article  CAS  Google Scholar 

  31. Rifaie-Graham O, Ulrich S, Galensowske NFB, Balog S, Chami M, Rentsch D, Hemmer JR, Read de Alaniz J, Boesel LF, Bruns N. J Am Chem Soc, 2018, 140: 8027–8036

    Article  CAS  PubMed  Google Scholar 

  32. Chen S, Costil R, Leung FK, Feringa BL. Angew Chem Int Ed, 2021, 60: 11604–11627

    Article  CAS  Google Scholar 

  33. Wang C, O’Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Chem Soc Rev, 2022, 51: 720–760

    Article  CAS  PubMed  Google Scholar 

  34. Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Adv Mater, 2021, 33: 2007290

    Article  CAS  Google Scholar 

  35. Bozovic O, Jankovic B, Hamm P. Nat Rev Chem, 2022, 6: 112–124

    Article  CAS  PubMed  Google Scholar 

  36. Zuckermann RN, Kerr JM, Kent SBH, Moos WH. J Am Chem Soc, 1992, 114: 10646–10647

    Article  CAS  Google Scholar 

  37. Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Chem Soc Rev, 2018, 47: 8572–8610

    Article  CAS  PubMed  Google Scholar 

  38. Adhikari B, Yamada Y, Yamauchi M, Wakita K, Lin X, Aratsu K, Ohba T, Karatsu T, Hollamby MJ, Shimizu N, Takagi H, Haruki R, Adachi SI, Yagai S. Nat Commun, 2017, 8: 15254

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fuentes E, Gerth M, Berrocal JA, Matera C, Gorostiza P, Voets IK, Pujals S, Albertazzi L. J Am Chem Soc, 2020, 142: 10069–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen P, Weng Y, Niu L, Chen Y, Wu L, Tung C, Yang Q. Angew Chem Int Ed, 2016, 55: 2759–2763

    Article  CAS  Google Scholar 

  41. Li JJ, Chen Y, Yu J, Cheng N, Liu Y. Adv Mater, 2017, 29: 1701905

    Article  Google Scholar 

  42. Chen X, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q. Angew Chem Int Ed, 2020, 59: 10493–10497

    Article  CAS  Google Scholar 

  43. Fu S, Su X, Li M, Song S, Wang L, Wang D, Tang BZ. Adv Sci, 2020, 7: 2001909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001071, 52373114, 52073092, 52325308) and Shanghai Scientific and Technological Innovation Project (19JC1411700). The authors also thank Dr. Xiaoling Yang at the National Demonstration Center for Experimental Material Education at the East China University of Science and Technology for assistance with XRD data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibao Jin or Shaoliang Lin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhu, L., Liu, J. et al. Azobenzene-based ultrathin peptoid nanoribbons for the potential on highly efficient artificial light-harvesting. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1931-3

Navigation