Skip to main content
Log in

Interfacial properties in planar SiC/2D metals from first principles

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We construct the in-plane heterojunctions of Boroβ12/SiC and Graphene/SiC to study the effect of different interface contacts on the electronic properties using first-principle calculations. The metalization of SiC at the contact interface is found in both heterojunctions, and two heterojunctions show high charge inject efficiency. The Boroβ12/SiC possesses p-type Schottky contact, while Graphene/SiC shows n-type Schottky contact. When the electric field is applied to two heterojunctions, the Schottky barrier height and contact type are changed, and the Ohmic contact is achieved at negative electric field. The results propose a way to design planar SiC-based electronic device with tunable interface contact.

Graphical abstract

Figure-projected local density of states and transmission spectra of (a) Boroβ12/SiC and (b) Graphene/SiC. The Boroβ12/SiC shows p-type Schottky contact with SBH of 1.071 eV, while Graphene/SiC presents n-type Schottky contact with SBH of 1.021 eV. It can be seen that the metalization of SiC at contact interface in Boroβ12/SiC is more clear than Graphene/SiC. There are fewer metal-induced gap states in the bandgap in Graphene/SiC than Boroβ12/SiC, suggesting the better electric contact in Graphene/SiC. Combined with ΦTB and SBH, Graphene/SiC has a good electronic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data will be made available on request].

References

  1. S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9, 20–25 (2006)

    Article  Google Scholar 

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  3. W. Liu, J.H. Kang, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, Role of metal contacts in designing high-performance monolayer n-Type WS2 field effect transistors. Nano Lett. 13, 1983–1990 (2013)

    Article  ADS  Google Scholar 

  4. S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi et al., High-mobility and low-power thin-film transistors based on multilayer Mo2 crystals. Nat. Commun. 3, 7 (2012)

    Article  Google Scholar 

  5. Li W, Wei JL, Chen W, Jing SC, Pan JH, Bian BA, Liao B, Wang GL: The in-plane metal contacted 5.1 nm Janus WSSe Schottky barrier field-effect transistors. Nanotechnology 2021, 32:9.

  6. Y.Q. Cai, G. Zhang, Y.W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 119, 13929–13936 (2015)

    Article  Google Scholar 

  7. J.L. Miao, X.W. Zhang, Y. Tian, Y.D. Zhao, Recent progress in contact engineering of field-effect transistor based on two-dimensional materials. Nanomaterials 12, 18 (2022)

    Article  Google Scholar 

  8. Y.Y. Liu, P. Stradins, S.H. Wei, Van der Waals metal-semiconductor junction: weak fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, 6 (2016)

    Article  Google Scholar 

  9. J.A. De Sousa, R. Pfattner, D. Gutiérrez, K. Jutglar, S.T. Bromley, J. Veciana, C. Rovira, M. Mas-Torrent, B. Fabre, N. Crivillers, Stable organic radical for enhancing metal-monolayer-semiconductor junction performance. ACS Appl. Mater. Interfaces 15, 4635–4642 (2023)

    Article  Google Scholar 

  10. W. Mönch, On the explanation of the barrier heights of InP Schottky contacts by metal-induced gap states. Appl. Phys. Lett. 93, 3 (2008)

    Article  Google Scholar 

  11. L. Xie, M.Z. Liao, S.P. Wang, H. Yu, L.J. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X.B. Lu et al., Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, 7 (2017)

    Article  Google Scholar 

  12. D.N. Wang, S.C. Jing, Z.L. Ma, Y. Wang, W. Chen, J.H. Pan, B.A. Bian, B. Liao, Electronic and optical properties of Be2C/graphene heterojunction from first-principles calculations. Comput. Mater. Sci. 229, 8 (2023)

    Article  Google Scholar 

  13. P.C. Shen, C. Su, Y.X. Lin, A.S. Chou, C.C. Cheng, J.H. Park, M.H. Chiu, A.Y. Lu, H.L. Tang, M.M. Tavakoli et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211 (2021)

    Article  ADS  Google Scholar 

  14. X. Cui, G.H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang, C.H. Lee, D.A. Chenet, X. Zhang, L. Wang, F. Ye et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015)

    Article  ADS  Google Scholar 

  15. C.X. Zheng, Q.H. Zhang, B. Weber, H. Ilatikhameneh, F. Chen, H. Sahasrabudhe, R. Rahman, S.Q. Li, Z. Chen, J. Hellerstedt et al., Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 11, 2785–2793 (2017)

    Article  Google Scholar 

  16. M.H.D. Guimaraes, H. Gao, Y.M. Han, K. Kang, S. Xie, C.J. Kim, D.A. Muller, D.C. Ralph, J. Park, Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016)

    Article  Google Scholar 

  17. W. Li, J.L. Wei, B.A. Bian, B. Liao, G.L. Wang, The effect of different covalent bond connections and doping on transport properties of planar graphene/MoS2/graphene heterojunctions. Phys. Chem. Chem. Phys. 23, 6871–6879 (2021)

    Article  Google Scholar 

  18. Z.Q. Fan, X.W. Jiang, J.W. Luo, L.Y. Jiao, R. Huang, S.S. Li, L.W. Wang, In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides (vol 96, 165402, 2017). Phys. Rev. B 103, 1 (2021)

    Article  Google Scholar 

  19. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  20. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  ADS  Google Scholar 

  21. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  Google Scholar 

  22. M. Ye, Y. Gao, J.J. Cadusch, S. Balendhran, K.B. Crozier, Mid-wave infrared polarization-independent graphene photoconductor with integrated plasmonic nanoantennas operating at room temperature. Advanced Optical Materials 9, 8 (2021)

    Article  Google Scholar 

  23. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  24. R. Quhe, X.Y. Peng, Y.Y. Pan, M. Ye, Y.Y. Wang, H. Zhang, S.Y. Feng, Q.X. Zhang, J.J. Shi, J.B. Yang et al., Can a black phosphorus Schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 9, 3959–3966 (2017)

    Article  Google Scholar 

  25. F.N. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)

    Article  ADS  Google Scholar 

  26. A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X.L. Liu, B.L. Fisher, U. Santiago, J.R. Guest et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)

    Article  ADS  Google Scholar 

  27. J.F. Gao, J.F. Zhang, H.S. Liu, Q.F. Zhang, J.J. Zhao, Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale 5, 9785–9792 (2013)

    Article  ADS  Google Scholar 

  28. B.J. Feng, J. Zhang, Q. Zhong, W.B. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K.H. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 564–569 (2016)

    Article  Google Scholar 

  29. X.M. Zhang, J.P. Hu, Y.C. Cheng, H.Y. Yang, Y.G. Yao, S.Y.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016)

    Article  Google Scholar 

  30. B. Peng, H. Zhang, H.Z. Shao, Y.F. Xu, R.J. Zhang, H.Y. Zhua, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. Journal of Materials Chemistry C 4, 3592–3598 (2016)

    Article  Google Scholar 

  31. R.G. Quhe, Y.Y. Wang, M. Ye, Q.X. Zhang, J. Yang, P.F. Lu, M. Lei, J. Lu, Black phosphorus transistors with van der Waals-type electrical contacts. Nanoscale 9, 14047–14057 (2017)

    Article  Google Scholar 

  32. P. Mélinon, B. Masenelli, F. Tournus, A. Perez, Playing with carbon and silicon at the nanoscale. Nat. Mater. 6, 479–490 (2007)

    Article  ADS  Google Scholar 

  33. J.M. Morbec, G. Rahman, Role of vacancies in the magnetic and electronic properties of SiC nanoribbons: An ab initio study. Phys. Rev. B 87, 8 (2013)

    Article  Google Scholar 

  34. S. Chabi, Z. Guler, A.J. Brearley, A.D. Benavidez, T.S. Luk, The creation of true two-dimensional silicon carbide. Nanomaterials 11, 10 (2021)

    Article  Google Scholar 

  35. L.G. Arellano, F. de Santiago, A. Miranda, F. Salazar, A. Trejo, L.A. Pérez, M. Cruz-Irisson, Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: a first-principles study. Int. J. Hydrogen Energy 46, 20266–20279 (2021)

    Article  Google Scholar 

  36. H.Q. Xie, J.Y. Li, G. Liu, X.Y. Cai, Z.Q. Fan, Impact of gate-source/drain underlap on the performance of monolayer SiC Schottky-Barrier field-effect transistor. IEEE Trans. Electron Devices 67, 4130–4135 (2020)

    Article  ADS  Google Scholar 

  37. T. Hussain, A.H.F. Niaei, D.J. Searles, M. Hankel, Three-dimensional silicon carbide from siligraphene as a high capacity lithium ion battery anode material. J. Phys. Chem. C 123, 27295–27304 (2019)

    Article  Google Scholar 

  38. X. Gao, Y.Q. Shen, Y.Y. Ma, S.Y. Wu, Z.X. Zhou, Investigation on photocatalytic mechanism of graphitic SiC (g-SiC)/MoS2 van der Waals heterostructured photocatalysts for overall water splitting. Phys. Chem. Chem. Phys. 21, 15372–15379 (2019)

    Article  Google Scholar 

  39. Z.J. Zhao, Y.L. Yong, Q.X. Zhou, Y.M. Kuang, X.H. Li, Gas-sensing properties of the sic monolayer and bilayer: a density functional theory study. ACS Omega 5, 12364–12373 (2020)

    Article  Google Scholar 

  40. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen et al., QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys.-Condensed Matter 32, 36 (2020)

    Article  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Comment on “Generalized gradient approximation made simple” - Reply. Phys. Rev. Lett. 80, 891–891 (1998)

    Article  ADS  Google Scholar 

  42. L.Z. Yang, W.K. Liu, H. Yan, X.X. Yu, P. Gong, Y.L. Li, X.Y. Fang, Structural evolution, interlayer coupling, band-gap, and optical properties of non-layered SiCNSs. Euro. Phys. J. Plus 139, 10 (2024)

    Article  Google Scholar 

  43. Y.Y. Yang, P. Gong, W.D. Ma, R. Hao, X.Y. Fang, Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes*. Chin. Phys. B 30, 8 (2021)

    Google Scholar 

  44. Y.H. Jia, P. Gong, S.L. Li, W.D. Ma, X.Y. Fang, Y.Y. Yang, M.S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A 384, 7 (2020)

    Article  Google Scholar 

  45. T.T. Li, C. He, W.X. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium-sulfur battery design. J. Mater. Chem. A 7, 4134–4144 (2019)

    Article  Google Scholar 

  46. Ma Y, Yan H, Yu X-X, Gong P, Li Y-L, Ma W-D, Fang X-Y: Effects of different atomic passivation on conductive and dielectric properties of silicon carbide nanowires. Journal of Applied Physics 2024, 135.

  47. Y. Wang, D.N. Wang, Z.L. Ma, W. Chen, S.C. Jing, J.H. Pan, B.A. Bian, Tunable Schottky barrier of in-plane MoSSe/Borophene heterojunctions under electric field and strain. Chem. Phys. 576, 8 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the fund of innovation center of radiation application under grant no. KFZC2021020801, the Fundamental Research Funds for the Central Universities under grant no.2021NTST14 and National Natural Science Foundation of China under grant no.12205016.

Author information

Authors and Affiliations

Authors

Contributions

XO: methodology, calculation, formal analysis, writing original draft. BL: conceptualization, supervision, editing. BB: conceptualization, formal analysis, editing.

Corresponding authors

Correspondence to Bin Liao or Baoan Bian.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, X., Liao, B. & Bian, B. Interfacial properties in planar SiC/2D metals from first principles. Eur. Phys. J. B 97, 29 (2024). https://doi.org/10.1140/epjb/s10051-024-00664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00664-w

Navigation