Skip to main content

Advertisement

Log in

Hybrid approach: combining eCCA and SSCOR for enhancing SSVEP decoding

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Currently, steady-state visual evoked potentials (SSVEPs) are applied in a variety of fields. In these applications, spatial filtering is the most commonly used method for decoding SSVEPs. However, existing methods for the SSVEP decoding require improvements in terms of the interaction speed, accuracy, and ease of use. Recent advances in performance have been attributed to the existing hybridisation-based approaches. This article presents and evaluates a novel approach for target identification of SSVEP. The suggested target recognition method significantly enhances the performance of SSVEP decoding by combining two existing methods: extended canonical correlation analysis (eCCA) and the sum of squared correlation (SSCOR). This combined approach is referred to as the extended CCA and sum of squared correlation approach (eCCA-SSCOR). The results of the offline experimental comparison are based on two publicly available datasets, including the San Diego dataset, which comprises 12 frequency targets recorded from 10 individuals, and the Benchmark dataset, comprising 40 frequency targets from 35 subjects. The statistical significance of the improvement was tested using paired samples t-tests and Wilcoxon rank-sum tests. The results indicate that the suggested eCCA-SSCOR approach significantly improves detection accuracy and ITR compared to four existing state-of-the-art methods: canonical correlation analysis (CCA), filter bank CCA (FBCCA), eCCA, and SSCOR. Our method achieved a high average accuracy for all subjects, with 99.5% for the San Diego dataset, and 98.60% for the Benchmark dataset corresponding to data length of 3.5 s and 5 s, respectively. Furthermore, a high ITR of 212.44 bits/min was achieved with a data duration (\(T_w\)) of 0.75 s using the San Diego dataset and was 238.66 bits/min with a \(T_w\) of 1 s for the Benchmark dataset. These offline results demonstrate that the proposed approach successfully combines eCCA and SSCOR to improve SSVEP decoding. Additionally, it is advantageous for applications based on offline processing and can be adapted for online analysis. Online applications can benefit from these results by providing fast interfaces with a large number of commands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code or data availability

Not applicable.

Notes

  1. https://www.kaggle.com/datasets/lzyuuu/ssvep-sandiego

  2. http://bci.med.tsinghua.edu.cn/download.html

  3. https://www.geeksforgeeks.org/paired-sample-t-test-in-excel/.

  4. https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/paired-sample-t-test/.

  5. https://users.stat.ufl.edu/~winner/sta3024/chapter14.pdf.

References

  1. Balconi M, Angioletti L (2023) Hemodynamic and electrophysiological biomarkers of interpersonal tuning during interoceptive synchronization. Information 14(5):289

    Article  Google Scholar 

  2. Hay L, Duffy A, Gilbert S, Grealy M (2022) Functional magnetic resonance imaging (FMRI) in design studies: methodological considerations, challenges, and recommendations. Des Stud 78:101078

    Article  Google Scholar 

  3. Alahi MEE, Liu Y, Xu Z, Wang H, Wu T, Mukhopadhyay SC (2021) Recent advancement of electrocorticography (ECOG) electrodes for chronic neural recording/stimulation. Mater Today Commun 29:102853

    Article  CAS  Google Scholar 

  4. Kalafatovich J, Lee M, Lee S-W (2020) Prediction of memory retrieval performance using ear-eeg signals. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 3363–3366. IEEE

  5. Chakrabarti S, Swetapadma A, Ranjan A, Pattnaik PK (2020) Time domain implementation of pediatric epileptic seizure detection system for enhancing the performance of detection and easy monitoring of pediatric patients. Biomed Signal Process Control 59:101930

    Article  Google Scholar 

  6. Phan H, Andreotti F, Cooray N, Chén OY, De Vos M (2018) Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Trans Biomed Eng 66(5):1285–1296

    Article  PubMed  Google Scholar 

  7. Eimon PM, Ghannad-Rezaie M, De Rienzo G, Allalou A, Wu Y, Gao M, Roy A, Skolnick J, Yanik MF (2018) Brain activity patterns in high-throughput electrophysiology screen predict both drug efficacies and side effects. Nat Commun 9(1):1–14

    Article  CAS  Google Scholar 

  8. Hight D, Kreuzer M, Ugen G, Schuller P, Stüber F, Sleigh J, Kaiser HA (2023) Five commercial depth of anaesthesia’monitors provide discordant clinical recommendations in response to identical emergence-like eeg signals. Br J Anaesth 130(5):536–545

    Article  CAS  PubMed  Google Scholar 

  9. Cherloo MN, Amiri HK, Daliri MR (2022) Spatio-spectral CCA (SS-CCA): a novel approach for frequency recognition in SSVEP-based BCI. J Neurosci Methods 371:109499

    Article  Google Scholar 

  10. Meng J, Zhang S, Bekyo A, Olsoe J, Baxter B, He B (2016) Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci Rep 6:38565

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. He B, Yuan H, Meng J, Gao S (2020) Brain–computer interfaces. Neural Eng, 131–183

  12. Moufassih M, Tarahi O, Hamou S, Agounad S, Idrissi Azami H (2023) Boosting motor imagery brain-computer interface classification using multiband and hybrid feature extraction. Multimed Tools Appl, 1–32

  13. Tarahi O, Hamou S, Moufassih M, Agounad S, Azami HI (2024) Decoding brain signals: a convolutional neural network approach for motor imagery classification. e-Prime-Adv Electr Eng Electron Energy, 100451

  14. Kurapa A, Rathore D, Edla DR, Bablani A, Kuppili V (2020) A hybrid approach for extracting EMG signals by filtering EEG data for IoT applications for immobile persons. Wireless Pers Commun 114:3081–3101

    Article  Google Scholar 

  15. Agounad S, Azami HI, Moufassih M, Tarahi O, Hamou S (2022) Detection and removal of EOG artifact from EEG signal using fuzzy logic and wavelet transform. In: 2022 27th International Conference on Automation and Computing (ICAC), pp 1–6. IEEE

  16. Bodile RM, Rao TH (2021) Improved complete ensemble empirical mode decomposition with adaptive noise: quasi-oppositional jaya hybrid algorithm for ecg denoising. Analog Integr Circ Sig Process 109(2):467–477

    Article  Google Scholar 

  17. Sekkal RN, Bereksi-Reguig F, Dib N, Ruiz-Fernandez D (2020) An approach to detecting and eliminating artifacts from the sleep EEG signals. In: Bioinformatics and Biomedical Engineering: 8th International Work-Conference, IWBBIO 2020, Granada, Spain, May 6–8, 2020, Proceedings 8, pp 155–160. Springer

  18. Hamou S, Azami HI, Agounad S, Tarahi O, Moufassih M (2022) Impact of the preprocessing block on the performance of the BCI system. In: E3S Web of Conferences, vol 351, p 01016. EDP Sciences

  19. Sutharsan V, Swaminathan A, Ramachandran S, Lakshmanan MK, Mahadevan B (2022) Electroencephalogram signal processing with independent component analysis and cognitive stress classification using convolutional neural networks. In: Proceedings of International Conference on Recent Trends in Computing: ICRTC 2021, pp 275–292. Springer

  20. Borowicz A (2018) Using a multichannel wiener filter to remove eye-blink artifacts from EEG data. Biomed Signal Process Control 45:246–255

    Article  Google Scholar 

  21. Dimigen O, Ehinger BV (2021) Regression-based analysis of combined EEG and eye-tracking data: theory and applications. J Vis 21(1):3–3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Singh V, Veer K, Sharma R, Kumar S (2016) Comparative study of fir and IIR filters for the removal of 50 Hz noise from EEG signal. Int J Biomed Eng Technol 22(3):250–257

    Article  Google Scholar 

  23. Chavan AS, Kolte M (2011) EEG signal preprocessing using wavelet transform. Int J Electron Eng 3(1):5–10

    Google Scholar 

  24. Yang C, Zhang H, Zhang S, Han X, Gao S, Gao X (2019) The spatio-temporal equalization for evoked or event-related potential detection in multichannel EEG data. IEEE Trans Biomed Eng 67(8):2397–2414

    PubMed  Google Scholar 

  25. Ojha MK, Mukul MK (2021) Detection of target frequency from SSVEP signal using empirical mode decomposition for SSVEP based BCI inference system. Wireless Pers Commun 116:777–789

    Article  Google Scholar 

  26. Agounad S, Hamou S, Tarahi O, Moufassih M, Islam MK (2022) Intelligent fuzzy system for automatic artifact detection and removal from eeg signals. J King Saud Univ Comput Inf Sci 34(10):9428–9441

    Google Scholar 

  27. Peksa J, Mamchur D (2023) State-of-the-art on brain-computer interface technology. Sensors 23(13):6001

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Moufassih M, Tarahi O, Hamou S, Agounad S, Azami HI (2023) An empirical study to evaluate feature extraction approaches CSP, TSM, and CSP-TSM on a MI-BCI under distraction. In: 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 3727–3732. IEEE

  29. Zhang Y, Xie SQ, Wang H, Zhang Z (2020) Data analytics in steady-state visual evoked potential-based brain-computer interface: a review. IEEE Sens J 21(2):1124–1138

    Article  ADS  Google Scholar 

  30. Lee C-C, Chiang H-S, Hsiao M-H (2021) Effects of screen size and visual presentation on visual fatigue based on regional brain wave activity. J Supercomput 77:4831–4851

    Article  Google Scholar 

  31. Vialatte F-B, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90(4):418–438

    Article  PubMed  Google Scholar 

  32. Quiles E, Dadone J, Chio N, Garcia E (2022) Cross-platform implementation of an SSVEP-based BCI for the control of a 6-DOF robotic arm. Sensors 22(13):5000

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Ng DW-K, Goh SY (2020) Indirect control of an autonomous wheelchair using SSVEP BCI. J Robot Mechatron 32(4):761–767

    Article  Google Scholar 

  34. Mannan MMN, Kamran MA, Kang S, Choi HS, Jeong MY (2020) A hybrid speller design using eye tracking and SSVEP brain-computer interface. Sensors 20(3):891

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Adams M, Benda M, Saboor A, Krause AF, Rezeika A, Gembler F, Stawicki P, Hesse M, Essig K, Ben-Salem S (2019) Towards an SSVEP-BCI controlled smart home. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp 2737–2742. IEEE

  36. Martišius I, Damaševičius R, et al (2016) A prototype SSVEP based real time BCI gaming system. Comput Intell Neurosci 2016

  37. Diez P, Orosco L, Garcés Correa A, Carmona L (2024) Assessment of visual fatigue in SSVEP-based brain-computer interface: a comprehensive study. Med Biol Eng Comput. https://doi.org/10.1007/s11517-023-03000-z

    Article  PubMed  Google Scholar 

  38. Chailloux Peguero JD, Hernández-Rojas LG, Mendoza-Montoya O, Caraza R, Antelis JM (2023) SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods. Front Neurosci 17:1142892

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao D, Zheng W, Wang M, Wang L, Xiao Y, Zhang Y (2022) A zero-padding frequency domain convolutional neural network for SSVEP classification. Front Hum Neurosci 16:815163

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sheykhivand S, Rezaii TY, Saatlo AN, Romooz N (2017) Comparison between different methods of feature extraction in BCI systems based on SSVEP. Int J Ind Math 9(4):341–347

    Google Scholar 

  41. Bin G, Gao X, Yan Z, Hong B, Gao S (2009) An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng 6(4):046002

    Article  PubMed  Google Scholar 

  42. Lin Z, Zhang C, Wu W, Gao X (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIS. IEEE Trans Biomed Eng 53(12):2610–2614

    Article  PubMed  Google Scholar 

  43. Nakanishi M, Wang Y, Chen X, Wang Y-T, Gao X, Jung T-P (2017) Enhancing detection of SSVEPS for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng 65(1):104–112

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen L, Chen P, Zhao S, Luo Z, Chen W, Pei Y, Zhao H, Jiang J, Xu M, Yan Y (2021) Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain-computer interface. J Neural Eng 18(6):066005

    Article  Google Scholar 

  45. Kumar GK, Reddy MR (2020) Constructing an exactly periodic subspace for enhancing SSVEP based BCI. Adv Eng Inform 44:101046

    Article  Google Scholar 

  46. Kumar GK, Reddy MR (2019) Designing a sum of squared correlations framework for enhancing SSVEP-based BCIS. IEEE Trans Neural Syst Rehabil Eng 27(10):2044–2050

    Article  Google Scholar 

  47. Zhang Y, Zhou G, Zhao Q, Onishi A, Jin J, Wang X, Cichocki A (2011) Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIS. In: International Conference on Neural Information Processing, pp 287–295. Springer

  48. Zhang Y, Zhou G, Jin J, Wang M, Wang X, Cichocki A (2013) L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 21(6):887–896

    Article  CAS  PubMed  Google Scholar 

  49. Wei C-S, Lin Y-P, Wang Y, Wang Y-T, Jung T-P (2013) Detection of steady-state visual-evoked potential using differential canonical correlation analysis. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp 57–60. IEEE

  50. Poryzala P, Materka A (2014) Cluster analysis of CCA coefficients for robust detection of the asynchronous SSVEPS in brain-computer interfaces. Biomed Signal Process Control 10:201–208

    Article  Google Scholar 

  51. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2014) Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int J Neural Syst 24(04):1450013

    Article  PubMed  Google Scholar 

  52. Lin Z, Zhang C, Wu W, Gao X (2007) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIS. IEEE Trans Biomed Eng 54(6):1172–1176

    Article  PubMed  Google Scholar 

  53. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8(2):025015

    Article  PubMed  Google Scholar 

  54. Nakanishi M, Wang Y, Wang Y-T, Mitsukura Y, Jung T-P (2014) A high-speed brain speller using steady-state visual evoked potentials. Int J Neural Syst 24(06):1450019

    Article  PubMed  Google Scholar 

  55. Nakanishi M, Wang Y, Wang Y-T, Jung T-P (2015) A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS ONE 10(10):0140703

    Article  Google Scholar 

  56. Xu M, Han J, Wang Y, Jung T-P, Ming D (2020) Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent p300 and ssvep features. IEEE Trans Biomed Eng 67(11):3073–3082

    Article  PubMed  Google Scholar 

  57. Wang Q, Cao T, Liu D, Zhang M, Lu J, Bai O, Sun J (2020) A motor-imagery channel-selection method based on SVM-CCA-CS. Meas Sci Technol 32(3):035701

    Article  ADS  Google Scholar 

  58. Wang Y, Chen X, Gao X, Gao S (2016) A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 25(10):1746–1752

    Article  PubMed  Google Scholar 

  59. Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664

    Article  PubMed  Google Scholar 

  60. Chen X, Wang Y, Gao S, Jung T-P, Gao X (2015) Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng 12(4):046008

    Article  PubMed  Google Scholar 

  61. Chen X, Wang Y, Nakanishi M, Gao X, Jung T-P, Gao S (2015) High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci 112(44):6058–6067

    Article  ADS  Google Scholar 

  62. Kettenring JR (1971) Canonical analysis of several sets of variables. Biometrika 58(3):433–451

    Article  MathSciNet  Google Scholar 

  63. McFarland DJ, Sarnacki WA, Wolpaw JR (2003) Brain computer interface (BCI) operation: optimizing information transfer rates. Biol Psychol 63(3):237–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

this work was supported by the Ministry of High Education, Scientific Research and Innovation, the Digital Development Agency (DDA) and the CNRST of Morocco under the number 14/FSA/2021. The APC is sponsored by IUB Sponsored Research Grant #2021-SETS-07)"

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soukaina Hamou.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamou, S., Moufassih, M., Tarahi, O. et al. Hybrid approach: combining eCCA and SSCOR for enhancing SSVEP decoding. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06027-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06027-7

Keywords

Navigation