Skip to main content
Log in

Structural Features of Tetra(p-tolyl)antimony p-Tol4SbX (X = Br, OC(O)Ph ∙ PhH, OSO2C6H2Me3-2,4,6) Derivatives

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

The structure of the tetra(p-tolyl)antimony compounds p-Tol4SbX (X = Br (1), OC(O)Ph ∙ PhH (2), OSO2C6Me3-2,4,6 (3)) is determined by X-ray diffraction analysis (XRD). According to the XRD data, the antimony atoms in complexes 13 exhibit a distorted trigonal bipyramidal coordination with three aryl ligands in the equatorial plane, and the axial angles CSbX are 174.75(8)°, 175.13(9)°, and 174.51(6)°, respectively.

The XRD data for compound 1 are as follows: C28H28BrSb, M = 566.16; monoclinic system, sp. gr. P21/n; cell parameters: a = 9.868(6) Å, b = 23.312(11) Å, c = 12.106(6) Å; β = 113.15(2)°, V = 2561(2) Å3, Z = 4; ρ(calc.) = 1.469 g/cm3; μ = 2.649 mm–1; F(000) = 1128.0; 2θ data acquisition region: 6.4°–56.76°; –13 ≤ h ≤ 13, –31 ≤ k ≤ 31, –16 ≤ l ≤ 16; total reflections 42 998; independent reflections 6359 (Rint = 0.0346); GOOF = 1.080; R factor 0.0325. For compound 2: C41H39O2Sb, M = 685.47; monoclinic system, sp. gr. С2/с; cell parameters: a = 28.186(13) Å, b = 15.116(6) Å, c = 17.629(8) Å; β = 91.73(2)°, V = 7507(6) Å3, Z = 8; ρ(calc.) = 1.213 g/cm3; μ = 0.765 mm–1; F(000) = 2816,0; 2θ data acquisition region: 6.572°–56.996°; –37 ≤ h ≤ 37, –20 ≤ k ≤ 20, –23 ≤ l ≤ 23; total reflections 116 806; independent reflections 9489 (Rint = 0.0492); GOOF = 1.102; R factor 0.0363. For compound 3: C37H39O3SSb, M = 685.49; monoclinic system, sp. gr. P21/n; cell parametrs: a = 12.172(4) Å, b = 18.802(5) Å, c = 15.433(6) Å; β = 108.744(12)°, V = 3345(2) Å3, Z = 4; ρ(calc.) = 1.361 g/cm3; μ = 0.921 mm–1; F(000) = 1408.0; 2θ data acquisition region: 5.96°–63.02°; –16 ≤ h ≤ 17, –27 ≤ k ≤ 27, ‒22 ≤ l ≤ 21; total reflections 138 835; independent reflections 11 081 (Rint = 0.0373); GOOF = 1.045; R factor 0.0304. Complete tables of atomic coordinates, bond lengths, and bond angles for compounds 13 have been deposited to the Cambridge Structural Database (CSD) with the following deposition numbers: 2182608, 2149953, and 2171918. For access to the data, please contact deposit@ccdc.cam.ac.uk or visit http://www.ccdc.cam.ac.uk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kocheshkov, K.A., Skoldinov, A.P., and Zemlyanskii, N.N., Metody elementoorganicheskoi khimii. Sur’ma, vismut (Methods of Organoelement Chemistry: Antimony and Bismuth), Moscow: Nauka, 1976.

  2. Sharutin, V.V., Poddel’sky, A.I., and Sharutina, O.K., Russ. J. Coord. Chem., 2020, vol. 46, no. 10, p. 663. https://doi.org/10.1134/S1070328420100012

    Article  CAS  Google Scholar 

  3. Akatova, K.N., Bochkova, R.I., and Lebedev, V.A., Dokl. Akad. Nauk SSSR, 1983, vol. 268, no. 6, p. 1389.

    CAS  Google Scholar 

  4. Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., et al., Russ. J. Coord. Chem., 2005, vol. 31, no. 2, p. 108.

    Article  CAS  Google Scholar 

  5. Sharutin, V.V., Sharutina, O.K., Platonova, T.P., et al., Russ. J. Coord. Chem., 2003, vol. 29, no. 1, p. 11.

    Article  CAS  Google Scholar 

  6. Sharutin, V.V., Sharutina, O.K., Panova, L.P., et al., Russ. J. Gen. Chem., 1997, vol. 67, no. 9, p. 1438.

    CAS  Google Scholar 

  7. Sharutin, V.V., Pakusina, A.P., Egorova, I.V., et al., Russ. J. Coord. Chem., 2003, vol. 29, no. 5, p. 312.

    Article  CAS  Google Scholar 

  8. Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., et al., Russ. J. Gen. Chem., 1997, vol. 67, no. 9, p. 1443.

    CAS  Google Scholar 

  9. Sharutin, V.V., Sharutina, O.K., Tarasova, T.A., et al., Russ. J. Gen. Chem., 1999, vol. 69, no. 12, p. 1892.

    Article  CAS  Google Scholar 

  10. Sharutin, V.V., Sharutina, O.K., Platonova, T.P., et al., Zh. Obshch. Khim., 2000, vol. 70, no. 11, p. 1932.

    Google Scholar 

  11. Sharutin, V.V., Sharutina, O.K., Molokova, O.V., et al., Russ. J. Coord. Chem., 2002, vol. 28, no. 8, p. 544.

    Article  CAS  Google Scholar 

  12. Sharutin, V.V., Sharutina, O.K., Molokova, O.V., et al., Russ. J. Gen. Chem., 2001, vol. 71, no. 8, p. 1243.

    Article  CAS  Google Scholar 

  13. Sharutin, V.V., Sharutina, O.K., Osipov, P.E., et al., Russ. J. Gen. Chem., 2000, vol. 70, no. 6, p. 867.

    CAS  Google Scholar 

  14. Sopshina, D.M., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2022, vol. 14, no. 1, p. 50. https://doi.org/10.14529/chem220106

    Article  Google Scholar 

  15. Efremov, A.N. and Sharutin, V.V., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2021, vol. 13, no. 1, p. 47. https://doi.org/10.14529/chem210105

    Article  Google Scholar 

  16. Sharutina, O.K., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2021, vol. 13, no. 4, p. 63. https://doi.org/10.14529/chem210404

    Article  Google Scholar 

  17. Senchurin, V.S. and Orlenko, E.D., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2019, vol. 11, no. 2, p. 66. https://doi.org/10.14529/chem190207

    Article  Google Scholar 

  18. Sharutin, V.V., Sharutina, O.K., Bondar’, E.A., et al., Russ. J. Coord. Chem., 2002, vol. 28, no. 5, p. 333.

    Article  CAS  Google Scholar 

  19. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., et al., Russ. J. Inorg. Chem., 2017, vol. 62, no. 10, p. 1320. https://doi.org/10.1134/S0036023617100163

    Article  CAS  Google Scholar 

  20. Sharutin, V.V. and Sharutina, O.K., Russ. J. Inorg. Chem., 2017, vol. 62, no. 7, p. 905. https://doi.org/10.1134/S003602361707021X

    Article  CAS  Google Scholar 

  21. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., et al., Russ. J. Inorg. Chem., 2016, vol. 61, no. 8, p. 969. https://doi.org/10.1134/S0036023616080143

    Article  CAS  Google Scholar 

  22. Sharutin, V.V., Sharutina, O.K., and Efremov, A.N., J. Struct. Chem., 2016, vol. 61, no. 9, p. 1414. https://doi.org/10.1134/S0022476620090085

    Article  Google Scholar 

  23. Sharutin, V.V., Sharutina, O.K., and Efremov, A.N., Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, p. 45. https://doi.org/10.1134/S0036023620010155

    Article  CAS  Google Scholar 

  24. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., and Artem’eva, E.V., Russ. J. Inorg. Chem., 2020, vol. 65, no. 4, p. 502. https://doi.org/10.1134/S0036023620040178

    Article  CAS  Google Scholar 

  25. Sharutin, V.V., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2023, vol. 15, no. 1, p. 50. https://doi.org/10.14529/chem230105

    Article  Google Scholar 

  26. Gillespie, R.J. and Hargittai, I., The VSEPR Model of Molecular Geometry, Boston: Allyn and Bacon, 1991.

    Google Scholar 

  27. Lebedev, V.A., Bochkova, R.I., and Kuz’min, E.A., Dokl. Akad. Nauk SSSR, 1981, vol. 260, no. 5, p. 1124.

    CAS  Google Scholar 

  28. Batsanov, S.S., Zh. Neorg. Khim., 1991, vol. 36, no. 12, p. 3015.

    CAS  Google Scholar 

  29. Ferguson, G., Glidewell, C., Lloyd, D., and Metcalfe, S., J. Chem. Soc., Perkin Trans. 2, 1988, no. 5, p. 731.

  30. Sharutin, V.V. and Sharutina, O.K., Russ. J. Gen. Chem., 2014, vol. 84, no. 3, p. 515.

    Article  CAS  Google Scholar 

  31. Bruker SMART and SAINT-Plus, versions 5.0, Data Collection and Processing Software for the SMART System, Madison: Bruker, 1998.

  32. Bruker SHELXTL/PC, versions 5.10, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker, 1998.

  33. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  ADS  CAS  Google Scholar 

  34. Sharutin, V.V., Galiullina, D.R., and Golovin, M.S., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2023, vol. 15, no. 2, p. 66. https://doi.org/10.14529/chem230205

    Article  Google Scholar 

  35. Galiullina, D.R. and Efremov, A.N., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2022, vol. 14, no. 3, p. 23. https://doi.org/10.14529/chem220303

    Article  Google Scholar 

  36. Sharutin, V.V. and Semenova, A.D., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Khim., 2023, vol. 15, no. 2, p. 44. https://doi.org/10.14529/chem230203

    Article  Google Scholar 

  37. Cambridge Crystallographic Database, Release 2022. Cambridge, 2022. http://www.ccdc.cam.ac.uk.

  38. Sharutin, V.V., Sharutina, O.K., and Senchurin, V.S., Russ. J. Inorg. Chem., 2013, vol. 58, no. 11, p. 1470. https://doi.org/10.1134/S003602361401015X

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V. Structural Features of Tetra(p-tolyl)antimony p-Tol4SbX (X = Br, OC(O)Ph ∙ PhH, OSO2C6H2Me3-2,4,6) Derivatives. rev. and adv. in chem. 13, 463–469 (2023). https://doi.org/10.1134/S2634827624600026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827624600026

Keywords:

Navigation