Skip to main content
Log in

Base-mediated Transition-metal Free Regiospecific Substitution with Nitroarenes: Vicarious Nucleophilic Substitution of Hydrogen in Nitroarenes

  • REVIEW ARTICLES
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Direct transition-metal free bond activation and bond formation reaction are central to the development of a sustainable and effective strategy for the synthesis of organic molecules. Facile, aerobic, regiospecific, base-mediated transition metal-free, and direct arylation reactions with inexpensive nitroarenes are need to explore. The use of strong base, promotes the vicarious nucleophilic substitution in nitroarenes. Moreover, functional group modification of synthesized nitroarenes compounds can open myriad applications in pharmaceutical and material industries. In this review, we summarize the recent progress achieved in the transition metal-free, base-mediated methodology has been employed for mono arylation, di-arylation, acylation, and aroylation reactions and we cover the research literature from 2013 to 2022. This review article presents the advantages, limitations, mechanistic rationalization, and future perspectives associated with synthetic methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.
Scheme 7.
Scheme 8.
Scheme 9.
Scheme 10.
Scheme 11.
Scheme 12.

REFERENCES

  1. Bias, A., Centomo, P., Del Zotto, A., and Zecca, M., Chem. Rev., 2018, vol. 118, p. 2249.

    Google Scholar 

  2. Buskes, M.J. and Blanco, M.-J., Molecules, 2020, vol. 25, p. 3493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torborg, C. and Beller, M., Adv. Synth. Catal., 2009, vol. 351, p. 3027.

    Article  CAS  Google Scholar 

  4. Miyaura, N. and Suzuki, A., Chem. Rev., 1995, vol. 95, p. 2457.

    Article  CAS  Google Scholar 

  5. Grover, J., Prakash, G., Goswami, N., and Maiti, D., Nat. Commun., 2022, vol. 13, p. 1085.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Newhouse, T., Baran, P.S., and Hoffmann, R.W., Chem. Soc. Rev., 2009, vol. 38, p. 3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mehta, V.P. and Punji, B., RSC Adv., 2013, vol. 3, p. 11957.

    Article  ADS  CAS  Google Scholar 

  8. Batra, A. and Singh, K.N., Eur. J. Org. Chem., 2020, vol. 2020, p. 6676.

    Article  CAS  Google Scholar 

  9. Mąkosza, M., Chem.—Eur. J., 2014, vol. 20, p. 5536.

    Article  PubMed  Google Scholar 

  10. Sun, C.L. and Shi, Z.J., Chem. Rev., 2014, vol. 114, p. 9219.

    Article  CAS  PubMed  Google Scholar 

  11. Rockl, J.L., Pollok, D., Franke, R., and Waldvogel, S.R., Chem. Res., 2020, vol. 53, no. 1, p. 45.

    Article  Google Scholar 

  12. Rao, B. and Kinjo, R., Chem.—Asian J., 2018, vol. 13, p. 1279.

    Article  CAS  PubMed  Google Scholar 

  13. Mąkosza, M., ChemText, 2019, vol. 5, p. 10.

    Article  Google Scholar 

  14. Loska, R. and Mąkosza, M., Synthesis, 2020, vol. 52, p. 3095.

    Article  CAS  Google Scholar 

  15. Mąkosza, M., Synthesis, 2017, vol. 49, no. 15, p. 3247.

    Article  Google Scholar 

  16. Poudel, T.N., Tamargo, R.J.I., Cai, H., and Lee, Y.R., Asian J. Org. Chem., 2018, vol. 7, no. 6, p. 985.

    Article  CAS  Google Scholar 

  17. Mąkosza, M. and Winiarsk, J., Acc. Chem. Res., 1987, vol. 20, p. 282.

    Article  Google Scholar 

  18. Mąkosza, M. and Wojciechowski, K., Chem. Rev., 2004, vol. 104, p. 2631.

    Article  PubMed  Google Scholar 

  19. Mąkosza, M., Golinski, J., and Baran, J., Org. Chem., 1984, vol. 49, p. 1488.

    Article  Google Scholar 

  20. Blazej, P. and Mąkosza, M., Chem.—Eur. J., 2008, vol. 14, p. 11113.

  21. Mąkosza, M., Glinka, T., and Kinowski, J., Tetrahedron, 1984, vol. 40, p. 1863.

    Article  Google Scholar 

  22. Mąkosza, M., Jagusztyn-Grochowska, M., Ludwikow, M., and Jawdosiuk, M., Tetrahedron, 1974, vol. 30, p. 3723.

    Article  Google Scholar 

  23. Russell, G.A., Janzen, E.G., and Strom, E.T., J. Am. Chem. Soc., 1964, vol. 86, no. 9, p. 1807.

    Article  CAS  Google Scholar 

  24. Lemek, T., Mąkosza, M., Stephenson, D.S., and Mayr, H., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, p. 2793.

    Article  CAS  PubMed  Google Scholar 

  25. Mąkosza, M., Lemek, T., Kwast, A., and Terrier, F., Org. Chem., 2002, vol. 67, p. 394.

    Article  Google Scholar 

  26. Mąkosza, M. and Stalinski, K., Tetrahedron Lett., 1998, vol. 39, p. 3575.

    Article  Google Scholar 

  27. Mąkosza, M. and Sypniewski, M., Tetrahedron, 1994, vol. 50, p. 4913.

    Article  Google Scholar 

  28. Adam, W., Mąkosza, M., Zhao, C.G., and Surowiec, M., Org. Chem., 2000, vol. 65, p. 1099.

    Article  CAS  Google Scholar 

  29. Kumar, P., Sharma, A.K., Guntreddi, T., Singh, R., and Singh, N., Org. Lett., 2018, vol. 20, no. 3, p. 744.

    Article  CAS  PubMed  Google Scholar 

  30. Xu, Q.-L., Gao, H., Yousufuddin, M., Ess, D.H., and Kurti, L., J. Am. Chem. Soc., 2013, vol. 135, no. 38, p. 14048.

    Article  CAS  PubMed  Google Scholar 

  31. Rathore, V., Sattar, M., Kumar, R., and Kumar, S., J. Org. Chem., 2016, vol. 81, p. 9206.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, S., Rathore, V., Verma, A., Prasad, C.D., Kumar, A., Yadav, A., Jana, S., Sattar, M.M., and Kumar, S., Org. Lett., 2015, vol. 17, no. 1, p. 82.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

M. S. P. Mandal Aurangabad.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas Shahaji Gawali.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawali, S.S. Base-mediated Transition-metal Free Regiospecific Substitution with Nitroarenes: Vicarious Nucleophilic Substitution of Hydrogen in Nitroarenes. rev. and adv. in chem. 13, 416–430 (2023). https://doi.org/10.1134/S263482762360024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263482762360024X

Keywords:

Navigation