Skip to main content
Log in

Frequency Doubler Based on Nonlinear Magnetoelectric Effect in a Planar Metglas/Langatate/Metglas Heterostructure

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A resonant voltage frequency doubler using the nonlinear magnetoelectric effect in planar heterostructure containing a piezoelectric langatate single crystal placed between two layers of amorphous ferromagnetic Metglas alloy was fabricated and studied. The frequency doubling occurred due to the nonlinear dependence of the Metglas magnetostriction on the magnetic field. A nonlinear magnetoelectric coefficient of 7.1 V/(cm Oe2) was obtained at acoustic resonance frequency of the structure due to high acoustic quality factor of ~2820. The power conversion coefficient of the doubler reached ~1% at optimal bias magnetic field of 2 Oe and matched load resistance of 0.8 kΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” J. Appl. Phys. 103, 31101 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  2. J. Gao, Z. Jiang, S. Zhang, Z. Mao, Yi. Shen, and Z. Chu, “Review of Magnetoelectric Sensors,” Actuators 10, 109 (2021). https://doi.org/10.3390/act10060109

    Article  Google Scholar 

  3. Zh. Chu, M. Pourhosseiniasl, and Sh. Dong, “Review of multi-layered magnetoelectric composite materials and devices applications,” J. Phys. D: Appl. Phys. 51, 243001 (2018). https://doi.org/10.1088/1361-6463/aac29b

    Article  ADS  CAS  Google Scholar 

  4. L. Y. Fetisov, D. V. Saveliev, D. V. Chashin, I. V. Gladyshev, and Y. K. Fetisov, “Circular magnetoelectric heterostructure based inductor tuned with magnetic and electric fields,” J. Commun. Technol. Electron. 66, 1402–1412 (2021). https://doi.org/10.1134/s1064226922020036

    Article  Google Scholar 

  5. Y. K. Fetisov and G. Srinivasan, “Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator,” Appl. Phys. Lett. 88, 143503 (2006). https://doi.org/10.1063/1.2191950

    Article  ADS  CAS  Google Scholar 

  6. D. A. Burdin, D. V. Chashin, N. A. Ekonomov, L. Y. Fetisov, Y. K. Fetisov, G. Sreenivasulu, and G. Srinivasan, “Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites,” J. Magn. Magn. Mater. 358359, 98–104 (2014). https://doi.org/10.1016/j.jmmm.2014.01.062

    Article  ADS  CAS  Google Scholar 

  7. F. A. Fedulov, L. Y. Fetisov, D. V. Chashin, D. V. Saveliev, D. A. Burdin, and Y. K. Fetisov, “Magnetic field spectrum analyzer using nonlinear magnetoelectric effect in composite ferromagnet-piezoelectric heterostructure,” Sens. Actuators A: Phys. 346, 113844 (2022). https://doi.org/10.1016/j.sna.2022.113844

    Article  CAS  Google Scholar 

  8. J. Ma, Z. Li, Yu. Lin, and C. W. Nan, “A novel frequency multiplier based on magnetoelectric laminate,” J. Magn. Magn. Mater. 323, 101–103 (2011). https://doi.org/10.1016/j.jmmm.2010.08.039

    Article  ADS  CAS  Google Scholar 

  9. Ya. Wang, Yi. Shen, J. Gao, M. Li, J. Li, and D. Viehland, “Nonlinear magnetoelectric response of a Metglas/piezofiber laminate to a high-frequency bipolar AC magnetic field,” Appl. Phys. Lett. 102, 102905 (2013). https://doi.org/10.1063/1.4795307

    Article  ADS  CAS  Google Scholar 

  10. J. Gao, Yi. Shen, P. Finkel, J. Blottman, J. Li, and D. Viehland, “Geomagnetic field tuned frequency multiplication in Metglas/Pb(Zr,Ti)O3 heterostructure,” Mater. Lett. 88, 47–50 (2012). https://doi.org/10.1016/j.matlet.2012.08.062

    Article  CAS  Google Scholar 

  11. S. Georgescu, O. Toma, L. Gheorghe, A. Achim, A. M. Chinie, and A. Stefan, “Disorder effects in the fluorescence spectra of Eu3+ in langatate (La3Ga5.5Ta0.5O14) crystals,” Opt. Mater. 30, 212–215 (2023). https://doi.org/10.1016/j.optmat.2006.10.027

    Article  ADS  CAS  Google Scholar 

  12. Metglas magnetic materials, Metglas Inc. https://metglas.com/wp-content/uploads/2021/06/2605SA1-Magnetic-Alloy-Updated.pdf. Cited September 30, 2023.

  13. S. Timoshenko, Vibration Problems in Engineering (Wolfenden Press, New York, 2007).

    Google Scholar 

  14. G. Sreenivasulu, L. Y. Fetisov, Y. K. Fetisov, and G. Srinivasan, “Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects,” Appl. Phys. Lett. 100, 52901 (2012). https://doi.org/10.1063/1.3679661

    Article  CAS  Google Scholar 

  15. L. Y. Fetisov, D. A. Burdin, N. A. Ekonomov, D. V. Chashin, J. Zhang, G. Srinivasan, and Y. K. Fetisov, “Nonlinear magnetoelectric effects at high magnetic field amplitudes in composite multiferroics,” J. Phys. D: Appl. Phys. 51, 154003 (2018). https://doi.org/10.1088/1361-6463/aab384

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-79-10128-P. The measurements were partially carried out on the equipment of the Joint Center of Collective Usage of RTU MIREA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Fetisov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetisov, L.Y., Savelev, D.V., Fedulov, F.A. et al. Frequency Doubler Based on Nonlinear Magnetoelectric Effect in a Planar Metglas/Langatate/Metglas Heterostructure. J. Commun. Technol. Electron. 68 (Suppl 3), S299–S303 (2023). https://doi.org/10.1134/S1064226923150159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923150159

Keywords:

Navigation