Skip to main content
Log in

Research Advances in Close-Coupled Atomizer Flow and Atomizing Mechanisms

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

As component manufacturing technology evolves, more demands are placed on improved performance of metal/alloy powders in medical, military, machining, and 3D printing applications. High-quality powders are characterized by low oxygen content, precise alloy composition, small particle size, and high particle sphericity. Coupled gas atomization powder preparation technology is an ideal choice for preparing high-quality powders with high atomization efficiency, low oxygen content, and high cooling rate. However, this powder preparation technology’s multiphase flow and multiscale coupling is a complicated physical process. In addition, the mechanism of atomization has not yet been fully understood. Thus, there is no consensus on the atomization phenomena and atomization mechanisms. Close-coupled gas atomization powder preparation technology is facing great challenges in the field of low-cost mass production of high-quality powders. Therefore, it is expected to improve the close-coupled gas atomized powder preparation technology and achieve breakthroughs in atomization principle, such as high-efficiency gas atomization technology, intelligent control of the high-efficiency gas atomization process, and so on. In this respect, this review summarizes the atomizer structures, gas atomization flow field-testing technologies, and gas atomization flow field numerical simulations based on relevant literature. In addition, the gas atomization mechanism of the closely coupled atomizers will be analyzed. Finally, several research directions are proposed for further in-depth studies on the atomization characteristics and mechanisms of close-coupled vortex loop slit atomizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. G. Dowson, Powder Metallurgy: The Process and its Products, Edition 1, Springer Netherlands, New Manufacturing Processes and Materials Series (1990).

  2. R. German, Powder Metallurgy Science, Metal Powder Industry Federation, Princeton (1994).

  3. A. Lawley, Atomization, the Production of Metal Powder, Metal Powder Industry Federation, Princeton (1992).

  4. Y.F. Mu, Study on Process Optimization of Gas Atomization for Preparation of Fine Metal Powders, PhD, Central Southern University, Changsha, Hunan, China (1997).

  5. John K. Beddow, The Production of Metal Powders by Atomization, John Wiley & Sons Ltd, Heyden (1978).

    Google Scholar 

  6. M. Xia, P. Wang, X.H. Zhang, and C.C. Ge, “Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys. Sin., 67, 41–51 (2018).

    Google Scholar 

  7. E. Klar and W.M. Shafer, Powder Metallurgy for High Performance Applications, Syracuse University Press, New York (1972).

    Google Scholar 

  8. H.W. Ouyang, X. Chen, W.T. Yu, and B.Y. Huang, “Progress and prospect on the gas atomization,” Powder Metall. Technol., 25, No. 1, 53–58 (2007).

    Google Scholar 

  9. O.S. Nichiporenko and Y.I. Naida, “Heat exchange between metal particles and gas in the atomization process,” Powder Metall. Met. Ceram., 7, 509–512 (1968).

    Article  Google Scholar 

  10. J.J. Dunkley, “Liquid atomization,” Powder Metall., 32, 96–97 (1989).

    CAS  Google Scholar 

  11. N.J. Grant, “A review of various atomization processes,” Phys. Mech. Metall., 35, 20 (1983).

    Google Scholar 

  12. R. Rutharde, “Novel aspects for high quality metal powders equipment,” Int. J. Powder Metall., 13,175–179 (1981).

    Google Scholar 

  13. A. Walz, Metal Powders and a Process for the Production Thereof, Pat. 4,534,917 U.S., 1985–08–13.

  14. I.E. Anderson, “Boost in atomizer pressure shaves powder-particle size,” Adv. Mater. Proc., 140, 30–32. (1991).

    Google Scholar 

  15. S.A. Miller, “Close-coupled gas atomization of metal alloys,” in: W.A. Kaysser, W.J. Huppmann (Eds.). Future of Powder Metallurgy, P/M '86: Proceedings of the 1986 International Powder Metallurgy Conference (Dusseldorf, 1986), Vol. 2, Verlag Schmid GmbH, Freiburg (1986).

  16. A. Ünal, M.J. Naylor, and H.B. McShane, “Modelling of metal powder production using a wax atomizer,” Powder Metall., 33, 260–268 (1990).

    Article  Google Scholar 

  17. B. Hopkins, “Close-coupled gas atomization comes of age,” Met. Powder Rep., 49, 34–38 (1994).

    Article  Google Scholar 

  18. G. Schulz, “NANOVAL process offers fine powder benefits,” Met. Powder Rep., 51, 30–33 (1996).

    Article  Google Scholar 

  19. J.X. Xu, C.Y. Chen, L.Y. Shen, W.D. Xuan, X.G. Li, S.S. Shuai, X. Li, T. Hu, C.J. Li, J.B. Yu, J. Wang, and Z.M. Ren, “Atomization mechanism and powder morphology in laminar flow gas atomization,” Acta Phys. Sin., 70,140201 (2021).

    Article  Google Scholar 

  20. J.T. Strauss, “Hotter gas increases atomization efficiency,” Met. Powder Rep., 54, 24–28 (1999).

    Article  Google Scholar 

  21. S. Hussain, C. Cui, L. He, L. Madler, and V. Uhlenwinkel, “Effect of hot gas atomization on spray forming of steel tubes using a close-coupled datomizer (CCA),J. Mater. Proc. Technol., 282, 116677 (2020).

    Article  CAS  Google Scholar 

  22. P. Wang, J. Li, X. Wang, B.R. Du, S.Y. Shen, X.Y. Ge, and M.H. Wang, “Impact mechanism of gas temperature in metal powder production via gas atomization,” Chin. Phys. B, 30, 1–15 (2021).

    Google Scholar 

  23. G. Schulz, “Taking the pressure out of atomization,” Met. Powder Rep., 57, 23–25 (2002).

    Article  Google Scholar 

  24. P. McGuinness, W. Drenckhan, and D. Weaire, “The optimal tap: Three-dimensional nozzle design,” J. Phys. D Appl. Phys., 38, 3382–3386 (2005).

    Article  CAS  Google Scholar 

  25. C. Czisch and U. Fritsching, “Atomizer design for viscous-melt atomization,” Mater. Sci. Eng. A, 477, 21−25 (2008).

    Article  Google Scholar 

  26. W.S. Prashanth, S.L. Thotarath, S. Sarkar, T.N.C. Anand, and S. Bakshi, “Experimental investigation on the effect of melt delivery tube position on liquid metal atomization,” Adv. Powder Technol., 32, 693–701 (2021).

    Article  CAS  Google Scholar 

  27. D.Y. Choi, J.W. Byun, and H.M. Park, “Analysis of liquid column atomization by annular dual-nozzle gas jet flow,” J. Fluid Mech., 943, A25 (2022).

    Article  CAS  Google Scholar 

  28. M. Zhang, Study on the Gas Flow Field in Close-Coupled Vortical Loop Slit Atomizer and the Atomization Mechanism, PhD, Nanjing University of Aeronautics and Astronautics, Nanjing, China (2021).

  29. J. He, S.Z. Ma, X.G. Zhang, X.Q. Gai, H.H. Chen, and K.C. Zhang, “Research progress and prospects of metal powder preparation technique for additive manufacturing, Mater. Mech. Eng., 44, 46–58 (2020).

    Google Scholar 

  30. T.L. Zhang and C.-T. Liu, “Design of titanium alloys by additive manufacturing: A critical review, Adv. Powder Mater., 1, 100014 (2022).

    Article  Google Scholar 

  31. J.L. Zhang, W.H. Yuan, B. Song, S. Yin, X.B. Wang, and Q.S. Wei, “Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys, Adv. Powder Mater., 1, 100035 (2022).

    Article  Google Scholar 

  32. R.F. Xu, Z.W. Geng, Y.Y. Wu, C. Chen, M. Ni, D. Li, T.M. Zhang, H.T. Huang, F. Liu, R.D. Li, and K.C. Zhou, “Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion,” Adv. Powder Mater., 1, 100056 (2022).

    Article  Google Scholar 

  33. W.H. Wu, T. Wang, and D. Fang, “Research progress on main preparation technologies of spherical metal powder for additive manufacturing,” Mater. Mech. Eng., 45, 76−83 (2021).

    Google Scholar 

  34. X.X. Fu, Y.X. Lin, X.J. Yue, M. Xun, B. Hur, and X.Z. Yue, “A review of additive manufacturing (3D printing) in aerospace: Technology, materials, applications, and challenges,” in: Dalai Tang, Junpei Zhong, Dalin Zhou (Eds.), Mobile Wireless Middleware, Operating Systems and Applications: 10th International Conference on Mobile Wireless Middleware, Operating Systems and Applications (MOBILWARE 2021), Springer Science and Business Media Deutschland GmbH (2022), pp. 73−98.

  35. X.G. Li, C. Liu, and Q. Zhu, “Research progress on gas atomization technology for preparation of feedstock powder used in metal additive manufacturing, Aeronaut. Manuf. Technol., 62, 22–34 (2019).

    Google Scholar 

  36. A. Mostafaei, A.M. Elliott, J.E. Barnes, F.Z. Li, W.D. Tan, C.L. Cramer, P. Nandwana, and M Chmielus, Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges,” Prog. Mater. Sci., 119, 100707 (2021).

    Article  CAS  Google Scholar 

  37. A.H. Lefebvre and V.G. McDonell, Atomization and Sprays, CRC Press, Boca Raton (2017).

    Book  Google Scholar 

  38. X.H. Gan, Aero Gas Turbine Engine Fuel Nozzle Technology, National Defense Industry Press, Beijing (2006).

    Google Scholar 

  39. W.D. Bachalo, “Experimental methods in multiphase flows,” Int. J. Multiphas. Flow, 20, 261–295 (1994).

    Article  Google Scholar 

  40. F. Durst and M. Zare, “Laser Doppler measurements in two-phase flows, in: The Accuracy of Flow Measurements by Laser Doppler Methods: Proceedings LDA Symposium, Copenhagen, Denmark (1975), pp. 403−429.

  41. W.D. Bachalo, “Spray diagnostics for the twenty-first century,” Atomization Spray, 10, 439–474 (2002).

    Article  Google Scholar 

  42. F. Durst, G. Brenn, and T.H. Xu, “A review of the development and characteristics of planar phase-Doppler anemometry,” Meas. Sci. Technol., 8, 1203−1221 (1997).

    Article  CAS  Google Scholar 

  43. S.Y. Huang, Modern Testing Techniques for Powder Engineering, Huazhong University of Science & Technology Press, Wuhan (2001).

    Google Scholar 

  44. R.J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids, 39, 159–169 (2005).

    Article  Google Scholar 

  45. B. Wieneke, “Stereo-PIV using self-calibration on particle images,” Exp. Fluids., 39, 267–280 (2005).

    Article  Google Scholar 

  46. M. Zhang, Z.M. Zhang, and Y. Chen, “Experimental study on characteristics of jet field flow at nozzle outlet of sprayer, J. Nanjing Univ. Aero. Astro, 51, 493–502 (2019).

    CAS  Google Scholar 

  47. P.K. Kirar, S.K. Soni, P.S. Kolhe, and K.C. Sahu, “An experimental investigation of droplet morphology in swirl flow,” J. Fluid Mech., 938, A6 (2022).

    Article  CAS  Google Scholar 

  48. G.S.E. Antipas, “Review of gas atomisation and spray forming phenomenology,” Powder Metall., 56, 317–330 (2013).

    Article  CAS  Google Scholar 

  49. J. Ting, J. Connor, and S. Ridder, “High-speed cinematography of gas-metal atomization,” Mater. Sci. Eng. A: Struct., 390, 452−460 (2005).

    Article  Google Scholar 

  50. G.S.E. Antipas, “Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model,” Comp. Mater. Sci., 35, 416–422 (2006).

    Article  CAS  Google Scholar 

  51. S. Markus, U. Fritsching, and K. Bauckhage, “Jet break up of liquid metal in twin fluid atomization,” Mater. Sci. Eng. A: Struct., 326, 122–133 (2002).

    Article  Google Scholar 

  52. M. Xiang, H.C. Zhou, X.Y. Zhao, and B. Liu, “Transient dynamic analysis for the ventilated supercavity under the action of tail jetting flow,” Acta Mech. Sin., 38, 321365 (2022).

    Article  Google Scholar 

  53. D.I. Meiron, G.R. Baker, and S.A. Orszag, “Analytic structure of vortex sheet dynamics. Part 1. Kelvin– Helmholtz instability,” J. Fluid Mech., 114, 283−298 (1982).

    Article  Google Scholar 

  54. B. Yu, L.Y. Li, H. Xu, B. Zhang, and H. Liu, “Effects of Reynolds number and Schmidt number on variable density mixing in shock bubble interaction,” Acta Mech. Sin., 38, 121256 (2022).

    Article  Google Scholar 

  55. C.J. Gurney, The Stability and Control of Curved Liquid Jet Break-up, PhD, University of Birmingham (2010).

    Google Scholar 

  56. S.P. Mates and G.S. Settles, “A study of liquid metal atomization using close-coupled nozzles. Part 1: Gas dynamic behavior,” Atomization Spray, 15, 19−40 (2005).

    Article  CAS  Google Scholar 

  57. E.A. Ibrahim and E.T. Akpan, “Three dimensional instability of viscous liquid sheets,” Atomization Spray,. 6, 649–665 (1996).

    Article  Google Scholar 

  58. M. Zhang, Z.M. Zhang, and Q.S. Liu, “Research on the primary liquid atomization mechanism of a close- coupled vortical loop slit atomizer,” Acta Mech. Sin. 39, 322476 (2023).

    Article  CAS  Google Scholar 

  59. J. Ting and I.E. Anderson, “A computational fluid dynamics (CFD) investigation of the wake closure phenomenon,” Mater. Sci. Eng. A: Struct., 379, 264–276 (2004).

    Article  Google Scholar 

  60. M. Pilch and C.A. Erdman, “Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid-drop,” Int. J. Multiphase Flow, 13, 741–757 (1987).

    Article  CAS  Google Scholar 

  61. H. Zhao, H.F. Liu, W.F. Li, and J.L. Xu, “Morphological classification of low viscosity drop bag breakup in a continuous air jet stream,” Phys. Fluids, 22, 114103 (2010).

    Article  Google Scholar 

  62. J. Mi, R.S. Figliola, and I.E. Anderson, “A numerical simulation of gas flow field effects on high pressure gas atomization due to operating pressure variation,” Mater. Sci. Eng. A: Struct., 208, 20–29 (1996).

    Article  Google Scholar 

  63. H. Liu and R. Dax, “Effect of atomizer geometry on gas flow field in gas atomization,” Met. Powder Rep., 53, 40 (1998).

    Article  Google Scholar 

  64. C. Yu and I.E. Anderson, “Application of computational fluid dynamics to analyze the gas flow field of single-discrete jets,” in: J.J. Oakes and J.H. Reinshagen (Eds.), Advances in Powder Metallurgy & Particulate Materials'98, Proceedings of the 1998 International Conference on Powder Metallurgy & Particulate Materials, Vol. 2, Metal Powder Industry Federation, Princeton (1998).

  65. P.I. Espina and U. Piomelli, “Study of the gas jet in a close-coupled gas-metal atomizer,” in: 36th AIAA Aerospace Sciences Meeting and Exhibit (2–15 January 1998), AIAA Paper 98–0959, Reno, NV, USA (1998). https://doi.org/10.2514/6.1998-959.

  66. S.Z. Chen and Z.M. Yin, “Effect of vortical nozzle on leakage pipe extension,” Mater. Sci. Technol., 6, 69–72 (1998).

    Google Scholar 

  67. S.Z. Chen, “Design principles of pipelines and nozzles for powder preparation by gas atomization,” Light. Met., 4, 56–59 (1998).

    Google Scholar 

  68. S.Z. Chen, “The factors to influence working efficiency of atomizer,” Light Alloy Fabrication Technol., 26, 43–46 (1998).

    CAS  Google Scholar 

  69. J.F. Sun, F.Y. Cao, C.S. Cui, J. Shen, and Q.C. Li, “Dynamic behaviors of gas velocity field during metal atomization,” Powder Metall. Technol., 20, 79–81 (2002).

    Google Scholar 

  70. U. Fritsching, “Droplets and particles in sprays: Tailoring particle properties within spray processes,” China Particuology, 3, 125–133 (2005).

    Article  CAS  Google Scholar 

  71. X. Chen, Study on the Structure of Close-Coupled Gas Atomization Flow Field and Atomization Mechanism, PhD, Central Southern University, Changsha, China (2007).

  72. N. Zeoli and S. Gu, “Computational simulation of metal droplet break-up, cooling and solidification during gas atomization,” Comp. Mater. Sci., 43, 268–278 (2008).

    Article  CAS  Google Scholar 

  73. J. Ting, M.W. Peretti, and W.B. Eisen, “The effect of wake-closure phenomenon on gas atomization performance,” Mater. Sci. Eng. A: Struct., 326, 110–121 (2002).

    Article  Google Scholar 

  74. M. Jeyakumar, G.S. Gupta, and S. Kumar, “Modeling of gas flow inside and outside the nozzle used in spray deposition,” J. Mater. Proc. Technol., 203, 471–479 (2008).

    Article  CAS  Google Scholar 

  75. M.M. Tong and D.J. Browne, “Direct numerical simulation of melt-gas hydrodynamic interactions during the early stage of atomisation of liquid intermetallic,” J. Mater. Proc. Technol., 202, 419–427 (2008).

    Article  CAS  Google Scholar 

  76. A. Allimant, M.P. Planche, Y. Bailly, L. Dembinski, and C. Coddet, “Progress in gas atomization of liquid metals by means of a De Laval nozzle,” Powder Technol., 190, 79–83 (2009).

    Article  CAS  Google Scholar 

  77. X.M. Zhao, J. Xu, X.X. Zhu, and S.M. Zhang, “Effect of protrusion length of melt delivery tube on gas flow field for supersonic gas atomization,” T. Nonferr. Metal. Soc., 19, 967–973 (2009).

    CAS  Google Scholar 

  78. H.W. Ouyang, Q. Wang, and Z.M. Liu, “Numerical study on abrupt change of flow field in close-coupled gas atomization,” Mater. Sci. Eng. Powder Metall., 15, 96–101 (2010).

    Google Scholar 

  79. O. Aydin and R. Ünal, “Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior,” Comput. Fluids., 42, 37–43 (2011).

    Article  CAS  Google Scholar 

  80. N. Zeoli, H. Tabbara, and S. Gu, “CFD modeling of primary breakup during metal powder atomization,” Chem. Eng. Sci., 66, 6498–6504 (2011).

    Article  CAS  Google Scholar 

  81. F.P. Liu, “Analysis on design parameters of the vortical loop slot atomizer,” Powder Metall. Technol., 29, 339–343 (2011).

    Google Scholar 

  82. W.J. Zhao, Study on the Gas Flow Field in Spray Deposition and the Breakup Mechanism, PhD, Harbin Institute of Technology, China (2012).

  83. W.J. Zhao, F.Y. Cao, Z.L. Ning, and J.F. Sun, “Flow field simulation of double layer atomizer, T. Nonferr. Metal. Soc., 19, s485–s489 (2009).

    Article  CAS  Google Scholar 

  84. W.J. Zhao, F.Y. Cao, Z.L. Ning, G.Q. Zhang, Z. Li, and J.F. Sun, “A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer,” Comput. Chem. Eng., 40, 58−66 (2012).

    Article  Google Scholar 

  85. N. Zeoli, H. Tabbara, and S. Gu, “Three-dimensional simulation of primary break-up in a close-coupled atomizer,” Appl. Phys. A: Mater., 108, 783–792 (2012).

    Article  CAS  Google Scholar 

  86. S. Motaman, A.M. Mullis, R.F. Cochrane, I.N. McCarthy, and D.J. Borman, “Numerical and experimental modelling of back stream flow during close-coupled gas atomization,” Comput. Fluids., 88, 1–10 (2013).

    Article  Google Scholar 

  87. J.H. Fu, The Study of Simulation and Experimental on Effect of Four Kinds of Atomizing Gas on Gas Flow Field for Supersonic Gas Atomization, PhD, General Research Institute for Nonferrous Metals, Beijing, China (2014).

  88. S. Motaman, A.M. Mullis, R.F. Cochrane, and D.J. Borman, “Numerical and experimental investigations of the effect of melt delivery nozzle design on the open-to closed-wake transition in closed-coupled gas atomization,” Metall. Mater. Trans., B46, 1990–2004 (2015).

    Article  CAS  Google Scholar 

  89. S.H. Wang, Y.C. Fang, D.G. Zhao, K.X. Zhang, and C.Y. Song, “Numerical simulation of liquid metal primary atomization in gaseous swirling flow field,” China Powder Sci. Technol., 22, 7–12 (2016).

    CAS  Google Scholar 

  90. Y.F. Ma and Z.M. Zhang, “Simulation and analysis of gas flow field in metallic solution atomizer,” Int. J. Fluid Dynam., 5, 76–82 (2017).

    Article  Google Scholar 

  91. D. Schwenck, N. Ellendt, J. Fischer-Buhner, P. Hofmann, and V. Uhlenwinkl, “A novel convergent- divergent annular nozzle design for close-coupled atomization,” Powder Metall., 60, 198–207 (2017).

    Article  CAS  Google Scholar 

  92. X.G. Li and U. Fritsching, “Process modeling pressure-swirl-gas-atomization for metal powder production,” J. Mater. Proc. Technol., 239, 1–17 (2017).

    Article  Google Scholar 

  93. R. Kaiser, C.G. Li, S.S. Yang, and D.G. Lee, “A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction,” Adv. Powder Technol., 29, 623–630 (2018).

    Article  Google Scholar 

  94. Y.E. Kayali and R. Ünal, “Determination of metal powder particle size by numerical modeling in gas atomization,” J. Fac. Eng. Archit. Gaz, 33, 1135–1144 (2018).

    Google Scholar 

  95. K.H. Arachchilage, M. Haghshenas, S. Park, L. Zhou, Y.H. Sohn, B. McWilliams, K. Cho, and R. Kumar, “Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution,” Adv. Powder Technol., 30, 2726–2732 (2019).

    Article  Google Scholar 

  96. F. Hernandez, T. Riedemann, J. Tiarks, B. Kong, J.D. Regele, T. Ward, and I.E. Anderson, “Numerical simulation and validation of gas and molten metal flows in close-coupled gas atomization,” in: TMS 2019. 148th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series, Pittsburgh, USA (2019), pp. 1507–1519.

  97. D. Beckers, N. Ellendt, U. Fritsching, and V. Uhlenwinkel, “Impact of process flow conditions on particle morphology in metal powder production via gas atomization,” Adv. Powder Technol., 31, 300–311 (2020).

    Article  CAS  Google Scholar 

  98. M. Zhang, Z.M. Zhang, Y.Q. Zhang, and Y.J. Lu, “CFD-based numerical simulation of gas flow field characteristics in close-coupled vortical loop slit gas atomization,” Atomization Spray, 31, 17–47 (2021).

    Article  Google Scholar 

  99. M. Zhang, Z.M. Zhang, Y.Q. Zhang, Y.J. Lu, and L. Lu, “Effects of gas flow field on clogging phenomenon in close-coupled vortical loop slit gas atomization,” Trans. Nanjing Univ. Aero. Astro., 38, 1003–1019 (2021).

    Google Scholar 

  100. S. Zhang, S. Alavi, A. Kashani, Y.S. Ma, Y.X. Zhan, W.X. Dai, W.J. Li, and J. Mostaghimi, “Simulation of supersonic high-pressure gas atomizer for metal powder production,” J. Therm. Spray Technol., 30, 1968–1994 (2021).

    Article  CAS  Google Scholar 

  101. C. Liu, X. Li, S. Shu, Y.H. Huang, X.G. Li, and Q. Zhu, “Numerical investigation on flow process of liquid metals in melt delivery nozzle during gas atomization process for fine metal powder production,” Trans. Nonferrous Met. Soc. China, 31, 3192–3204 (2021).

    Article  CAS  Google Scholar 

  102. S. Luo, H.Z. Wang, Z.Y. Gao, Y. Wu, and H.W. Wang, “Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model,” Mater. Design. 212,110264 (2021).

    Article  CAS  Google Scholar 

  103. X.X. Gao, J.Y. Chen, Y.N. Qiu, Y. Ding, and J.L. Xie, “Effect of phase change on jet atomization: a direct numerical simulation study,” J. Fluid Mech., 935, A16 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Published in Poroshkova Metallurgiya, Vol. 62, Nos. 7–8 (552), pp. 24–56, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Z. & Liu, Q. Research Advances in Close-Coupled Atomizer Flow and Atomizing Mechanisms. Powder Metall Met Ceram 62, 400–426 (2023). https://doi.org/10.1007/s11106-024-00403-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-024-00403-x

Keywords

Navigation