Skip to main content
Log in

Study of the Structure of Metasandstones Using Broadband Acoustic Spectroscopy with a Laser Source of Ultrasound

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of measuring the frequency dependences of the attenuation coefficient and phase velocity of longitudinal ultrasonic waves in metasandstone samples with varying degrees of deformation–metamorphic alteration are presented to study the influence of the sample structure on these acoustic characteristics. The measurements are performed using broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses in the 1–70 MHz operating frequency range. The metasandstones of the zonally metamorphosed Ladoga Group of the Paleoproterozoic Baltic Shield are studied, which exhibit varying degrees of structural and textural changes that occurred in the temperature range of 400–600°С. Cores of two different thicknesses with a similar mineral phase composition, but with some variations in the structural and textural composition of the substrate, were selected at four sampling points of different temperature levels and studied. For metasandstones from three sampling points, the frequency dependences of the attenuation coefficient and phase velocity of longitudinal ultrasonic waves almost completely coincide in three zones of each core and are nearly the same for cores of two different thicknesses. The latter fact confirms the reliability of the results of the ultrasonic studies, and the coincidence of the results for three different zones of each core shows that the structure of these metasandstones is uniform. The attenuation coefficient and phase velocity of ultrasound considerably differ in the studied zones of two metasandstone cores in one of the four sampling points (LV1246) due to the significant nonuniformity of their structure. In addition, for metasandstones from different sampling points, a difference in the absolute values of the attenuation coefficient and phase velocity of ultrasound is found in the entire studied frequency range. The Rayleigh model of ultrasonic scattering is used to estimate the maximum grain sizes in the studied samples. The results correlate with data obtained using optical microscopy of thin sections of all samples. The implemented broadband acoustic spectroscopy method with a laser source of ultrasound can help to reveal the relationship between the frequency dependences of the attenuation coefficient and phase velocity of longitudinal ultrasonic waves, the characteristic features of the structure, and conditions for the formation of metasandstones in each specific deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Belov, M.A., Cherepetskaya, E.B., Shkuratnik, V.L., Karabutov, A.A., Makarov, V.A., and Podymova, N.B., Qualitative estimation of mineral grain sizes by ultrasonic laser spectroscopy, J. Mining Sci., 2003, vol. 39, no. 5. pp. 419–424.https://doi.org/10.1023/B:JOMI.0000029303.78880.47

  2. Baud, P., Wong, T.-F., and Zhu, W., Effects of porosity and crack density on the compressive strength of rocks, Int. J. Rock Mech. Min. Sci., 2014, vol. 67, pp. 202–211. https://doi.org/10.1016/j.ijrmms.2013.08.031

    Article  Google Scholar 

  3. Egorov, N.A., Krasnova, M.A., Beloborodov, D.E., Afinogenova, N.A., and Matveev, M.A., Acoustic studies of clayey rocks during thermal metamorphism, Geofiz. Issled., 2021, vol. 22, no. 1, pp. 68–87. https://doi.org/10.21455/gr2021.1-5

    Article  Google Scholar 

  4. Fitting, D.W. and Adler, L., Ultrasonic Spectral Analysis for Nondestructive Evaluation, New York: Plenum Press, 1981.

    Book  Google Scholar 

  5. Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M., and Risnes, R., Elastic wave propagation in rocks, Dev. Pet. Sci., 2008, vol. 53, pp. 175–218. https://doi.org/10.1016/S0376-7361(07)53005-0

    Article  Google Scholar 

  6. Ghasemi, M.F. and Bayuk, I.O., Bounds for pore space parameters of petroelastic models of carbonate rocks, Izv., Phys. Solid Earth, 2020, vol. 56, no. 2, pp. 207–224. https://doi.org/10.1134/S1069351320020032

    Article  Google Scholar 

  7. Gusev, V.E. and Karabutov, A.A., Laser Optoacoustics, New York: Am. Inst. Phys., 1993.

  8. Haderer, W., Scherleitner, E., Gseller, J., Heise, B., Mitter, T., Ryzy, M., Reitinger, B., and Hettich, M., Spatial imaging of stratified heterogeneous microstructures: Determination of the hardness penetration depth in thermally treated steel parts by laser ultrasound, Non-Destr. Test. Eval. Int., 2023, vol. 138, p. 102868. https://doi.org/10.1016/j.ndteint.2023.102868

    Article  CAS  Google Scholar 

  9. In’kov, V.N., Cherepetskaya, E.B., Shkuratnik, V.L., Karabutov, A.A., and Makarov, V.A., Ultrasonic echo sounding by thermal optical sources of longitudal waves, J. Mining Sci., 2004, vol. 40, no. 3, pp. 231–235.https://doi.org/10.1007/s10913-005-0002-7

  10. Jeong, H., Hsu D.K. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites, Ultrasonics, 1995, vol. 33, no. 3, pp. 195–203. https://doi.org/10.1016/0041-624X(95)00023-V

    Article  Google Scholar 

  11. Karabutov, A.A. and Podymova, N.B., Pulse optoacoustic diagnostics of biological objects, Izv. Ross. Akad. Nauk, Ser. Fiz., 1997, vol. 61, no. 8, pp. 1580–1585.

    CAS  Google Scholar 

  12. Khokhlova, T.D., Pelivanov, I.M., and Karabutov, A.A., Methods of optoacoustic diagnostics of biological tissues, Acoust. Phys., 2009, vol. 55, no. 4–5, pp. 674–684.https://doi.org/10.1134/S1063771009040241

    Article  ADS  CAS  Google Scholar 

  13. Kube, C.M., Attenuation of laser generated ultrasound in steel at high temperatures; Comparison of theory and experimental measurements, Ultrasonics, 2016, vol. 70, pp. 238–240. https://doi.org/10.1016/j.ultras.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  14. Lockner, D.A., Moore, D.E., and Reches, Z., Microcrack interaction leading to shear fracture, in Rock Mechanics: Proc. of the 33rd ARMA US Symposium, Tillerson, J.R. and Wawersik, W.R., Eds., Rotterdam, Netherlands, 1992, pp. 807–816.

  15. Podymova, N.B. and Karabutov, A.A., Nondestructive assessment of local microcracking degree in orthoclase and plagioclase feldspars using spectral analysis of backscattered laser-induced ultrasonic pulses, Ultrasonics, 2022, vol. 125, p. 106796. https://doi.org/10.1016/j.ultras.2022.106796

    Article  CAS  PubMed  Google Scholar 

  16. Podymova, N.B., Kalashnikov, I.E., Bolotova, L.K., and Kobeleva, L.I., Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites, Ultrasonics, 2019, vol. 99, p. 105959. https://doi.org/10.1016/j.ultras.2019.105959

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds, W.N. and Smith, R.L., Ultrasonic wave attenuation spectra in steels, J. Phys. D: Appl. Phys., 1984, vol. 17, pp. 109–116. https://doi.org/10.1088/0022-3727/17/1/015

    Article  ADS  CAS  Google Scholar 

  18. Sarpun, I.H. and Kilickaya, M.S., Mean grain size determination in marbles by ultrasonic first backwall echo height measurements, Non-Destr. Test. Eval. Int., 2006, vol. 39, pp. 82–86. https://doi.org/10.1016/j.ndteint.2005.06.010

    Article  CAS  Google Scholar 

  19. Schon, J.H., Physical Properties of Rocks: A Workbook, Elsevier, 2011.

    Google Scholar 

  20. Shikhova, N.M., Patonin, A.V., Ponomarev, A.V., and Smirnov, V.B., Variations in ultrasonic signal spectra for triaxial testing of rock samples, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 591–602. https://doi.org/10.1134/S1069351322040103

    Article  Google Scholar 

  21. Shkuratnik, V.L. and Nozdrina, N.D., Theoretical preconditions for quantitative ultrasound estimation of the dimensions of a mineral grain, J. Mining Sci., 1998, vol. 34, no. 6, pp. 554–560.

  22. Smirnov, V.B. and Ponomarev, A.V., Fizika perekhodnykh rezhimov seismichnosti (Physics of Transient Seismicity Regimes), Moscow: RAN, 2020.

  23. Sobolev, G.A., Avalanche unstable fracturing formation model, Izv., Phys. Solid Earth, 2019, vol. 55, no. 1, pp. 138–151. https://doi.org/10.1134/S1069351319010117

    Article  Google Scholar 

  24. Vavilov, V.P., Karabutov, A.A., Chulkov, A.O., Derusova, D.A., Moskovchenko, A.I., Cherepetskaya, E.B., and Mironova, E.A., Comparative study of active infrared thermography, ultrasonic laser vibrometry and laser ultrasonics in application to the inspection of graphite/epoxy composite parts, Quant. Infrared Thermogr. J., 2019, vol. 17, no. 4, pp. 235–248. https://doi.org/10.1080/17686733.2019.1646971

    Article  Google Scholar 

  25. Velikoslavinskii, D.S., Metamorphic zones in the Northern Ladoga region and estimation of metamorphism temperatures of kyanite and andalusite types of regional metamorphism, in Metamorficheskie poyasa SSSR (Metamorphic Belts of the USSR), Leningrad: Nauka, 1971, pp. 61–70.

  26. Vorobyev, R.I., Sergeichev, I.V., Karabutov, A.A., Mironova, E.A., Savateeva, E.V., and Akhatov, I.Sh., Application of the optoacoustic method to assess the effect of voids on the crack resistance of structural carbon plastics, Acoust. Phys., 2020, vol. 66, no. 2, pp. 132–136. https://doi.org/10.1134/S1063771020020153

    Article  ADS  Google Scholar 

  27. Zhang, Sh., Wu, Sh., and Zhang, G., Strength and deformability of a low-porosity sandstone under true triaxial compression conditions, Int. J. Rock Mech. Min. Sci., 2020, vol. 127, pp. 1–13. https://doi.org/10.1016/j.ijrmms.2019.104204

    Article  Google Scholar 

  28. Zhu, J., Zhai, T., Liao, Z., Yang, S., Liu, X., and Zhou, T., Low-amplitude wave propagation and attenuation through damaged rock and a classification scheme for rock fracturing degree, Rock Mech. Rock Eng., 2020, vol. 53, pp. 3983–4000. https://doi.org/10.1007/s00603-020-02162-8

    Article  ADS  Google Scholar 

  29. Zhukov, V.S. and Kuz’min, Yu.O., The influence of fracturing of the rocks and model materials on P-wave propagation velocity: Experimental studies, Izv., Phys. Solid Earth, 2020, vol. 56, no. 4, pp. 470–480. https://doi.org/10.1134/S1069351320040102

    Article  Google Scholar 

  30. Zhukov, V.S. and Kuz’min, Yu.O., Comparison of approaches to assessing the compressibility of pore space, J. Mining Inst., 2022, vol. 258, pp. 1008–1017. https://doi.org/10.31897/PMI.2022.97

    Article  Google Scholar 

Download references

Funding

The research was performed within state tasks of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, and the Physics Department of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Podymova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podymova, N.B., Ponomarev, A.V., Morozov, Y.A. et al. Study of the Structure of Metasandstones Using Broadband Acoustic Spectroscopy with a Laser Source of Ultrasound. Izv. Atmos. Ocean. Phys. 59, 1670–1680 (2023). https://doi.org/10.1134/S0001433823110038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823110038

Keywords:

Navigation