Skip to main content

Advertisement

Log in

Photoreaction products of extract from the fruiting bodies of Polyozellus multiplex

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Photochemical reactions are powerful tools for synthesizing organic molecules. The input of energy provided by light offers a means to produce strained and unique molecules that cannot be assembled using thermal protocols, allowing for the production of immense molecular complexity in a single chemical step. Furthermore, unlike thermal reactions, photochemical reactions do not require active reagents such as acids, bases, metals, or enzymes. Photochemical reactions play a central role in green chemistry. This article reports the isolation and structure determination of four new compounds (14) from the photoreaction products of the Polyozellus multiplex MeOH ext. The structures of the new compounds were elucidated using MS, IR, comprehensive NMR measurements and microED. The four compounds were formed by deacetylation of polyozellin, the main secondary metabolite of P. multiplex, and addition of singlet oxygen generated by sunlight. To develop drugs for treating Alzheimer’s disease (AD) on the basis of the amyloid cascade hypothesis, the compounds (14) obtained by photoreaction were evaluated for BACE1 inhibitory activity. The hydrolysates (5 and 6) of polyozellin, the main secondary metabolites of P. multiplex, were also evaluated. The photoreaction products (3 and 4) and hydrolysates (5 and 6) of polyozellin showed BACE1 inhibitory activity (IC50: 2.2, 16.4, 23.3, and 5.3 μM, respectively).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  2. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114:5601–5606. https://doi.org/10.1073/pnas.1614680114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galloway WRJD, Isidoro-Liobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Com 80. https://doi.org/10.1038/ncomms1081

  4. Kikuti H, Oshima Y (2018) Developments toward the production of diverse natural-product-like compounds: diversity-oriented synthesis and diversity-enhanced extracts. Heterocycles 96:1509–1527. https://doi.org/10.3987/REV-18-885

    Article  Google Scholar 

  5. Kikuti H, Kawai K, Nakashiro Y, Yonezawa T, Kawaji K, Kodama E, Oshima Y (2019) Construction of a meroterpenoid-like compounds library based on diversity-enhanced extracts. Chem Eur J 25:1106–1112. https://doi.org/10.1002/chem.201805417

    Article  CAS  Google Scholar 

  6. Suzuki Y, Ichinohe K, Sugawara A, Kida S, Murase S, Zhang J, Yamada O, Hattori T, Oshima Y, Kikuti H (2021) Development of indole alkaloid-type dual immune checkpoint inhibitors against CTLA-4 and PD-L1 based on diversity-enhanced extracts. Front Chem 9:766107. https://doi.org/10.3389/fchem.2021.766107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ciana CL, Bochet CG (2007) Clean and easy photochemistry. Chimia 61:650–654. https://doi.org/10.2533/chimia.2007.650

    Article  CAS  Google Scholar 

  8. Kärkäs MD, Porco JA, Stephenson CRJ (2016) Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem Rev 116:9683–9747. https://doi.org/10.1021/acs.chemrev.5b00760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoffmann N (2012) Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Photochem Photobiol Sci 11:1613–1641. https://doi.org/10.1039/c2pp25074h

    Article  CAS  PubMed  Google Scholar 

  10. Ito S, White FJ, Okunishi E, Aoyama Y, Yamano A, Sato H, Ferrara JD, Jasnowski M, Meyer M (2021) Structure determination of small molecule compounds by an electron diffractometer for 3DED/MicroED. Cryst Eng Comm 23:8622–8630. https://doi.org/10.1039/D1CE01172C

    Article  CAS  Google Scholar 

  11. Gemmi M, Mugnaioli E, Gorelik TE, Kolb U, Palatinus L, Boullay P, Hovmoller S, Abrahams JP (2019) 3D Electron diffraction: the nanocrystallography revolution. ACS Cent Sci 5:1315–1329. https://doi.org/10.1021/acscentsci.9b00394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi S, Kawano T, Nakajima N, Suda Y, Usukhbayar N, Kimura K, Koshino H (2018) Synthesis of polyozellin, a prolyl oligopeptidase inhibitor, and its structural revision. Bioorg Med Chem Lett 28:930–933. https://doi.org/10.1016/j.bmcl.2018.01.054

    Article  CAS  PubMed  Google Scholar 

  13. Nakabayashi S, Ishikura A, Fujihara K, Hirabayashi S, Koike S, Sasaki H, Ogasawara Y, Koyama K, Kinoshita K (2022) Inhibition of amyloid-β aggregation by p-terphenyls from the mushroom Polyozellus multiplex and their neuroprotective effects. Heterocycles 104:2025–2036. https://doi.org/10.3987/COM-22-14711

    Article  CAS  Google Scholar 

  14. Chon SH, Yang EJ, Lee T, Song KS (2016) β-Secretase (BACE1) inhibitory and neuroprotective effects of p-terphenyls from Polyozellus multiplex. Food Funct 9:3834–3842. https://doi.org/10.1039/C6FO00538A

    Article  CAS  Google Scholar 

  15. Clinger JA, Zhang Y, Liu Y, Miller MD, Hall RE, Lanen SGV, Phillips GN Jr, Thorson JS, Elshahawi SI (2021) Structure and function of a dual reductase–dehydratase enzyme system involved in p-terphenyl biosynthesis. ACS Chem Biol 16:2816–2824. https://doi.org/10.1021/acschembio.1c00701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hainder W, Xu W, Liu M, Wu Y, Thang Y, Wei M, Wang C, Lu L (2020) Structure-activity relationships and potent cytotoxic activities of terphenyllin derivatives from a small compound library. Chem Biodivers 17:e2000207. https://doi.org/10.1002/cbdv.202000207

    Article  CAS  Google Scholar 

  17. Zhou G, Zhu T, Che Q, Zhang G, Li D (2021) Structural diversity and biological activity of natural p-terphenyls. Mar Life Sci Technol 4:62–73. https://doi.org/10.1007/s42995-021-00117-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li W, Li X, Lou H (2018) Structural and biological diversity of natural p-terphenyls. J Asian Nat Prod Res 20:1–13. https://doi.org/10.1080/10286020.2017.1381089

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Mou X, Mao N, Hao J, Liu M, Zheng J, Wang C, Gu Y, Shao C (2018) Design, semisynthesis, α-glucosidase inhibitory, cytotoxic, and antibacterial activities of p-terphenyl derivatives. Eur J Med Chem 146:232–244. https://doi.org/10.1016/j.ejmech.2018.01.057

    Article  CAS  PubMed  Google Scholar 

  20. Liu J (2006) Natural terphenyls: developments since 1877. Chem Rev 106:2209–2223. https://doi.org/10.1021/cr050248c

    Article  CAS  PubMed  Google Scholar 

  21. Gunasekera SP, Gunasekera M, Gunawardana GP, McCarthy P, Burres N (1990) Two new bioactive cyclic peroxides from the marine sponge Plakortis angulospiculatus. J Nat Prod 53:669–674. https://doi.org/10.1021/np50069a021

    Article  CAS  Google Scholar 

  22. Jiménez-Romero C, Ortiz I, Vincente J, Vera B, Rodríguez AD, Nam S, Jove R (2010) Bioactive cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J Nat Prod 73:1694–1700. https://doi.org/10.1021/np100461t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghogare AA, Greer A (2016) Using singlet oxygen to synthesize natural products and drugs. Chem Rev 116:9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726

    Article  CAS  PubMed  Google Scholar 

  24. Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  25. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  ADS  CAS  Google Scholar 

  26. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement, and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  ADS  CAS  Google Scholar 

  27. Fujihara K, Shimoyama T, Kawazu R et al (2020) Amyloid β aggregation inhibitory activity of triterpene saponins from the cactus Stenocereus pruinosus. J Nat Med 75:284–298. https://doi.org/10.1007/s11418-020-01463-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hiroyasu Sato and Mr. Keigo Takahira (Rigaku Corporation, Tokyo, Japan) for their advice and support in this MicroED measurement.

Funding

This work was supported in part by a grant from the Dementia Drug Resource Development Center Project (DRC), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (S1511016).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Kaoru Kinoshita.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2017 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuka, H., Nakai, K., Shimizu, E. et al. Photoreaction products of extract from the fruiting bodies of Polyozellus multiplex. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01790-6

Keywords

Navigation