Skip to main content
Log in

Adsorptive Properties of Ti3C2Tx MXenes with Optimal Surface Functionalization by (‒O, ‒F) Groups

  • NANOMATERIALS FOR FUNCTIONAL AND STRUCTURAL PURPOSES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Nanoadsorbents, including 2D MХenes, are being actively studied as materials for the removal of heavy metals from water. Adsorption is a cheap and effective way to reduce the pollution level with such-kind toxic substances. Ti3C2Tx MXenes are one of the most promising materials in this field, due to their large specific surface area rich in adsorption centers. Additionally, the composition of this material can be optimally selected to ensure the maximum adsorption efficiency, for example, by controlling their surface functionalization. Density functional theory (DFT) modeling is one of the most effective methods for studying and predicting the adsorption properties of MXenes. In this work, the DFT approach is used to determine the adsorption energies (Eads) of mercury and iron ions on the surface of Ti3C2O2 and Ti3C2F2 MXenes. It is found that the maximum adsorption energy (Eads = –3.59 eV for Fe and –0.357 eV for Hg) is exhibited by MXenes with oxygen surface functionalization. Also, the work describes the synthesis and characterization of Ti3C2Tx MXenes with a predominant content of –O functional groups. Characterization of the material includes the study of its optical properties, i.e., absorption spectra: their analysis is a simple way to subsequently detect the content of MXenes in treated water. It is found that Ti3C2Tx MXenes have a light-absorption peak at a wavelength of 795 nm, and the dependence of the intensity of this peak on the concentration is linear in the range from 10 to 100 μg/mL, which is convenient for subsequent use in optical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. D. Saritha, Mater. Today: Proc. 62, 3973(2022). https://doi.org/10.1016/j.matpr.2022.04.579

    Article  CAS  Google Scholar 

  2. N. S. Topare and V. S. Wadgaonkar, Mater. Today: Proc. 77, 8–1(2023). https://doi.org/10.1016/j.matpr.2022.08.450

    Article  CAS  Google Scholar 

  3. H. Xiang, X. Min, C.J. Tang, et al., J. Water Process Eng. 49, 103023 (2022). https://doi.org/10.1016/j.jwpe.2022.103023

    Article  Google Scholar 

  4. N. Gaur, G. Flora, M. Yadav, and A. Tiwari, Environ. Sci. Process. Impacts 16, 180 (2014). https://doi.org/10.1039/c3em00491k

    Article  CAS  PubMed  Google Scholar 

  5. U. O. Aigbe and O. A. Osibote, Environ. Nanotechnol., Monit. Manage. 16, 100578 (2021). https://doi.org/10.1016/j.enmm.2021.100578

    Article  CAS  Google Scholar 

  6. N. Grba, A. Baldermann, and M. Dietzel, Int. J. Sediment Res. 38, 33–48 (2023). https://doi.org/10.1016/j.ijsrc.2022.08.002

    Article  Google Scholar 

  7. H. Sadegh, G. A. M. Ali, and V. K. Gupta, et al. J. Nanostruct. Chem. 7, 1 (2017). https://doi.org/10.1007/s40097-017-0219-4

    Article  CAS  Google Scholar 

  8. A. F. C. Campos, H. A. L. de Oliveira, F. N. da Silva, et al. J. Hazard. Mater. 362, 82 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  9. A. F. C. Campos, P. H. Michels-Brito, F. G. Da Silva, et al. J. Environ. Chem. Eng. 7, 103031 (2019). https://doi.org/10.1016/j.jece.2019.103031

    Article  CAS  Google Scholar 

  10. F. L. Rodovalho, G. Capistrano, J. A. Gomes, et al. Chem. Eng. J. 302, 725 (2016). https://doi.org/10.1016/j.cej.2016.05.110

    Article  CAS  Google Scholar 

  11. K. V. Wong and B. Bachelier, J. Energy Resour. Technol. 136, 021601 (2014). https://doi.org/10.1115/1.4024917

    Article  CAS  Google Scholar 

  12. S. Wang, H. Sun, H. M. Ang, and M. O. Tadé, Chem. Eng. J. 226, 336 (2013). https://doi.org/10.1016/j.cej.2013.04.070

    Article  CAS  Google Scholar 

  13. Y. Zhang, L. Wang, N. Zhang, and Z. Zhou, RSC Adv. 8, 19895 (2018). https://doi.org/10.1039/c8ra03077d

  14. Y. Sun and Y. Li, Chemosphere 271, 129578 (2021). https://doi.org/10.1016/j.chemosphere.2021.129578

    Article  CAS  PubMed  Google Scholar 

  15. S. Yu, H. Tang, D. Zhang, et al., Sci. Total Environ. 811, 152280 (2022). https://doi.org/10.1016/j.scitotenv.2021.152280

    Article  CAS  PubMed  Google Scholar 

  16. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, Adv. Mater. 26, 992 (2014). https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  17. P. Myagmarsereejid, M. Bat-Erdene, A. S. R. Bati, et al., ACS Appl. Nano Mater. 5, 12107 (2022). https://doi.org/10.1021/acsanm.2c01520

    Article  CAS  Google Scholar 

  18. Z. Wei, Z. Peigen, T. Wubian, et al., Mater. Chem. Phys. 206, 270 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.034

    Article  CAS  Google Scholar 

  19. M. Mozafari and M. Soroush, Mater. Adv. 2, 7277 (2021). https://doi.org/10.1039/d1ma00625h

    Article  CAS  Google Scholar 

  20. M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23, 4248 (2011). https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  21. Y. Gogotsi and B. Anasori, ACS Nano 13, 8491 (2019). https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  PubMed  Google Scholar 

  22. M. Khazaei, A. Mishra, N. S. Venkataramanan, et al., Curr. Opin. Solid State Mater. Sci. 23, 164 (2019). https://doi.org/10.1016/j.cossms.2019.01.002

    Article  CAS  Google Scholar 

  23. H. Huang, C. Dong, W. Feng, et al., Adv. Drug Delivery Rev. 184, 114178 (2022). https://doi.org/10.1016/j.addr.2022.114178

    Article  CAS  Google Scholar 

  24. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000). https://doi.org/10.1016/s0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  25. J.A. Kumar, P. Prakash, T. Krithiga, et al., Chemosphere 286, 131607 (2022). https://doi.org/10.1016/j.chemosphere.2021.131607

    Article  CAS  PubMed  Google Scholar 

  26. P. Karthikeyan, K. Ramkumara, K. Pandi, et al., Ceram. Int. 47, 3692 (2021). https://doi.org/10.1016/j.ceramint.2020.09.221

    Article  CAS  Google Scholar 

  27. B. M. Jun, N. Her, C. M. Park, and Y. Yoon, Environ. Sci.: Water Res. Technol. 6, 173 (2020). https://doi.org/10.1039/C9EW00625G

    Article  CAS  Google Scholar 

  28. X. Hu, C. Chen, D. Zhang, and Y. Xue, Chemosphere 278, 130206 (2021). https://doi.org/10.1016/j.chemosphere.2021.130206

    Article  CAS  PubMed  Google Scholar 

  29. A. Shahzad, K. Rasool, W. Miran, et al., ACS Sustainable Chem. Eng. 5, 11481 (2017). https://doi.org/10.1021/acssuschemeng.7b02695

    Article  CAS  Google Scholar 

  30. L. Wang, W. Tao, L. Yuan, et al., Chem. Commun. 53, 12084 (2017). https://doi.org/10.1039/C7CC06740B

    Article  CAS  Google Scholar 

  31. V. Thirumal, R. Yuvakkumar, P. Senthil Kumar, et al., Chemosphere 281, 130984 (2021). https://doi.org/10.1016/j.chemosphere.2021.130984

    Article  CAS  PubMed  Google Scholar 

  32. S. Yu, H. Tang, D. Zhang, et al., Sci. Total Environ. 811, 152280 (2022). https://doi.org/10.1016/j.scitotenv.2021.152280

    Article  CAS  PubMed  Google Scholar 

  33. X. Gao, Y. Zhou, Y. Tan, et al., Appl. Surf. Sci. 464, 53 (2019). https://doi.org/10.1016/j.apsusc.2018.09.071

    Article  CAS  Google Scholar 

  34. K. Fu, X. Liu, D. Yu, et al., Environ. Sci. Technol. 54, 16212 (2020). https://doi.org/10.1021/acs.est.0c05532

    Article  CAS  PubMed  Google Scholar 

  35. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys. Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  36. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  37. H. J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  38. M. Yunus, R. Kumar, B. C. Maji, and M. Krishnan, J. Eur. Ceram. Soc. 42, 354 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.030

    Article  CAS  Google Scholar 

  39. M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, et al., Nature 516, 78 (2015). https://doi.org/10.1038/nature13970

    Article  CAS  Google Scholar 

  40. J. Zhang, N. Kong, S. Uzun, et al., Adv. Mater. 32, 2001093 (2020). https://doi.org/10.1002/adma.202001093

    Article  CAS  Google Scholar 

  41. T. Li, L. Yao, Q. Liu, et al., Angew. Chem., Int. Ed. 57, 6115 (2018). https://doi.org/10.1002/anie.201800887

    Article  CAS  Google Scholar 

  42. X. Sheng, S. Li, H. Huang, et al., J. Mater. Sci. 56, 4212 (2021). https://doi.org/10.1007/s10853-020-05525-2

    Article  CAS  Google Scholar 

  43. A. Miranda, J. Halim, A. Lorke, and M. W. Barsoum, Mater. Res. Lett. 5, 322 (2017). https://doi.org/10.1080/21663831.2017.1280707

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to N.R. Shilov (Kant Baltic Federal University, Russia) for assistance with the synthesis of experimental samples of MXenes, as well as M.V. Gorshenkov (National Research Technological University “MISiS,” Russia) and A.Yu. Karpenkov (Tver State University, Russia) for assistance with the synthesis and characterization of the bulk samples of the Ti3AlC2 MAX phase.

Funding

This work was carried out with financial support from the Russian Science Foundation (grant no. 22-12-20036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sobolev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, K.V., Omelyanchik, A.S., Niaz, S. et al. Adsorptive Properties of Ti3C2Tx MXenes with Optimal Surface Functionalization by (‒O, ‒F) Groups. Nanotechnol Russia 18 (Suppl 1), S76–S83 (2023). https://doi.org/10.1134/S2635167623600943

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623600943

Navigation