Skip to main content
Log in

Synthesis, Structure, and Thermoelectric Properties of Holmium-Doped Nanomaterials Based on Bismuth Telluride

  • NANOMATERIALS FOR FUNCTIONAL AND STRUCTURAL PURPOSES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Powdered thermoelectric materials Bi2–xHoxTe2.7Se0.3 (x = 0, 0.001, 0.0025, 0.005, 0.01, and 0.02) are obtained by the method of solvothermal synthesis. The possibility of obtaining nanomaterials based on holmium-doped bismuth telluride is shown. The influence of the concentration of holmium on the parameters of the crystal lattice, morphology and average size of the synthesized particles are studied. Bulk materials Bi2–xHoxTe2.7Se0.3 are obtained by spark plasma sintering. All obtained samples are textured, the crystallographic axis of the texture (0 0 l) is directed parallel to the direction of the application of pressure during compaction. Development of the texture is confirmed by scanning electron microscopy and X-ray diffraction (XRD) analysis. The grains in the textured samples form an ordered lamellar structure, and the lamellar sheets lie in the plane perpendicular to the direction of pressing. An increase in the concentration of holmium leads to an increase in the degree of texturing. The thermoelectric properties of the bulk materials Bi2–xHoxTe2.7Se0.3 are also obtained

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. D. Wolf, J. Lutsko, and M. Kluge, “Physical Properties of Grain-Boundary Materials: Comparison of EAM and Central-Force Potentials,” in Atomistic Simulation of Materials, Ed. by V. Vitek and D. J. Srolovitz (Springer, Boston, 1989).

    Google Scholar 

  2. T. Watanabe, J. Mater. Sci. 46, 4095 (2011). https://doi.org/10.1007/s10853-011-5393-z

    Article  CAS  Google Scholar 

  3. I. P. Semenova, R. Z. Valiev, E. B. Yakushina, et al., J. Mater. Sci. 4, 7354 (2008). DOI: 8-2984-4https://doi.org/10.1007/s10853-00

  4. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, et al., Energy Environ. Sci. 2, 466 (2009). https://doi.org/10.1039/b822664b

    Article  CAS  Google Scholar 

  5. M. G. Kanatzidis, Chem. Mater. 22, 648 (2009). https://doi.org/10.1021/cm902195j

    Article  CAS  Google Scholar 

  6. Z. G. Chen, G. Han, L. Yang, et al., Prog. Nat. Sci. Mater. Int. 22, 535 (2012). https://doi.org/10.1016/j.pnsc.201P2.11.011

    Article  Google Scholar 

  7. O. N. Ivanov, M. N. Yapryntsev, A. E. Vasil’ev, and N. I. Repnikov. Ross. Nanotekhnol. 16, 348 (2021). https://doi.org/10.1134/S1992722321030079

    Article  Google Scholar 

  8. O. Ivanov, O. Maradudina, and R. Lyubushkin, Mater. Charact. 99, 175 (2015).https://doi.org/10.1016/j.matchar.2014.12.001

  9. Y. Xia, J. Park, F. Zhou, et al., Phys. Rev. Appl. 11, 024017 (2019). https://doi.org/10.1103/PhysRevApplied.11.024017

    Article  CAS  Google Scholar 

  10. M. Yaprintsev, A. Vasil’ev, and O. Ivanov, J. Eur. Ceram. Soc. 40, 742 (2020). https://doi.org/10.1016/j.jeurceramsoc.2018.12.041

    Article  CAS  Google Scholar 

  11. X. F. Wei, et al., J. Eur. Ceram. Soc. 40, 935 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.034

    Article  CAS  Google Scholar 

  12. J. H. Lee, I. H. Oh, and H. K. Park, Arch. Metall. Mater. 66, 1029 (2021). https://doi.org/10.24425/amm.2021.136419

    Article  CAS  Google Scholar 

  13. S. G. Huang, et al., Int. J. Refract. Hard Met. 26, 389 (2008). https://doi.org/10.1016/j.ijrmhm.2007.09.003

    Article  CAS  Google Scholar 

  14. H. J. Goldsmid, Materials 7, 2577 (2014). https://doi.org/10.3390/ma7042577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Q. Jia, Solid State Chem. 95, 184 (1991). https://doi.org/10.1016/0022-4596(91)90388-X

    Article  CAS  Google Scholar 

  16. J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958). https://doi.org/10.1016/0022-3697(58)90139-2

    Article  CAS  Google Scholar 

  17. S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963). https://doi.org/10.1016/0022-3697(63)90207-5

    Article  CAS  Google Scholar 

  18. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004). https://doi.org/10.1016/C2009-0-07986-0

    Book  Google Scholar 

  19. M. Yaprintsev, A. Vasil’ev, O. Ivanov, and D. Popkov, J. Solid State Chem. 312, 123176 (2022). https://doi.org/10.1016/j.jssc.2022.123176

    Article  CAS  Google Scholar 

  20. M. N. Joswiak, M. F. Doherty, and B. Peters, Proc. Natl. Acad. Sci. 115, 656 (2018). https://doi.org/10.1073/pnas.1713452115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. J. Wang, J. W. Lu, F. S. Xu, and F. S. Zhang, Chin. Sci. Bull. 56, 713 (2011). https://doi.org/10.1007/s11434-010-4184-2

    Article  CAS  Google Scholar 

  22. M. Kowacz, M. Prieto, and A. Putnis, Geochim. Cosmochim. Acta 74, 469 (2010). https://doi.org/10.1016/j.gca.2009.10.028

    Article  CAS  Google Scholar 

  23. G. D. Sproul, ACS Omega 5, 11585 (2020). https://doi.org/10.1021/acsomega.0c00831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. T. Sanderson, J. Am. Chem. Soc. 105, 2259 (1983). https://doi.org/10.1021/ja00346a026

    Article  CAS  Google Scholar 

  25. O. Ivanov, M. Yaprintsev, and A. Vasil’ev, J. Solid State Chem. 290, 121559 (2020). https://doi.org/10.1016/j.jssc.2020.121559

    Article  CAS  Google Scholar 

  26. F. K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959). https://doi.org/10.1016/0022-1902(59)80070-1

    Article  CAS  Google Scholar 

  27. J. Burke and D. Turnbull, Prog. Metal. Phys. 3, 220 (1952). https://doi.org/10.1016/0502-8205(52)90009-9

    Article  CAS  Google Scholar 

  28. I. Alvarez-Clemares, G. Mata-Osoro, A. Fernandez, et al., Adv. Eng. Mater. 12, 1154 (2010). https://doi.org/10.1002/adem.201000176

    Article  CAS  Google Scholar 

  29. Y. Liu, Y. Zhang, K. H. Lim, et al., ACS Nano 12, 7174 (2018). https://doi.org/10.1021/acsnano.8b03099

    Article  CAS  PubMed  Google Scholar 

  30. L. P. Bulat, I. A. Drabkin, V. V. Karataev, et al., Phys. Solid State 52, 1836—1841 (2010).

    Article  CAS  Google Scholar 

  31. O. Ivanov, M. Yaprintsev, R. Lyubushkin, and O. Soklakova, Scr. Mater. 146, 91 (2018). https://doi.org/10.1016/j.scriptamat.2017.11.031

    Article  CAS  Google Scholar 

  32. M. Yaprintsev, R. Lyubushkin, O. Soklakova, and O. Ivanov, J. Electron. Mater. 47, 1362 (2018). https://doi.org/10.1007/s11664-017-5940-8

    Article  CAS  Google Scholar 

  33. F. Wu, H. Z. Song, J. F. Jia, et al., Phys. Status Solidi A 210, 1183 (2013). https://doi.org/10.1002/pssa.201228589

    Article  CAS  Google Scholar 

  34. W. Y. Shi, F. Wu, K. L. Wang, et al., J. Electron. Mater. 43, 3162 (2014). https://doi.org/10.1007/s11664-014-3220-4

    Article  CAS  Google Scholar 

  35. X. B. Zhao, Y. H. Zhang, and X. H. Ji, Inorg. Chem. Commun. 7, 386 (2004). https://doi.org/10.1016/j.inoche.2003.12.020

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with financial support of the Russian Science Foundation (grant no. 21-73-00199) using equipment of the Center for Collective Use of Scientific Equipment “Technologies and Materials” of the Federal State Autonomous Educational Institution of Higher Education “Belgorod National Research University.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Yapryntsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapryntsev, M.N., Ivanov, O.N. Synthesis, Structure, and Thermoelectric Properties of Holmium-Doped Nanomaterials Based on Bismuth Telluride. Nanotechnol Russia 18 (Suppl 1), S101–S109 (2023). https://doi.org/10.1134/S2635167623600980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623600980

Navigation