Skip to main content

Advertisement

Log in

STK32C modulates doxorubicin resistance in triple-negative breast cancer cells via glycolysis regulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Understanding the mechanisms underlying doxorubicin resistance in triple-negative breast cancer (TNBC) holds paramount clinical significance. In our study, we investigate the potential of STK32C, a little-explored kinase, to impact doxorubicin sensitivity in TNBC cells. Our findings reveal elevated STK32C expression in TNBC specimens, associated with unfavorable prognosis in doxorubicin-treated TNBC patients. Subsequent experiments highlighted that STK32C depletion significantly augmented the sensitivity of doxorubicin-resistant TNBC cells to doxorubicin. Mechanistically, we unveiled that the cytoplasmic subset of STK32C plays a pivotal role in mediating doxorubicin sensitivity, primarily through the regulation of glycolysis. Furthermore, the kinase activity of STK32C proved to be essential for its mediation of doxorubicin sensitivity, emphasizing its role as a kinase. Our study suggests that targeting STK32C may represent a novel therapeutic approach with the potential to improve doxorubicin’s efficacy in TNBC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Publicly available dataset analyzed in this study can be found here: TCGA (https://portal.gdc.cancer.gov/).

References

  1. Derakhshan F, Reis-Filho JS (2022) Pathogenesis of Triple-negative breast Cancer. Annu Rev Pathol 17:181–204. https://doi.org/10.1146/annurev-pathol-042420-093238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin L, Duan JJ, Bian XW, Yu SC (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast cancer Research: BCR 22:61. https://doi.org/10.1186/s13058-020-01296-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garrido-Castro AC, Lin NU, Polyak K (2019) Insights into Molecular classifications of Triple-negative breast Cancer: improving patient selection for treatment. Cancer Discov 9:176–198. https://doi.org/10.1158/2159-8290.Cd-18-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y et al (2022) Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 15. https://doi.org/10.1186/s13045-022-01341-0

  5. Bianchini G, De Angelis C, Licata L, Gianni L (2022) Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol 19:91–113. https://doi.org/10.1038/s41571-021-00565-2

    Article  CAS  PubMed  Google Scholar 

  6. Marra A, Curigliano G (2021) Adjuvant and Neoadjuvant Treatment of Triple-negative breast Cancer with Chemotherapy. Cancer J (Sudbury Mass) 27:41–49. https://doi.org/10.1097/ppo.0000000000000498

    Article  CAS  Google Scholar 

  7. Won KA, Spruck C (2020) Triple–negative breast cancer therapy: current and future perspectives (review). Int J Oncol 57:1245–1261. https://doi.org/10.3892/ijo.2020.5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacDonald I, Nixon NA, Khan OF (2022) Triple-negative breast Cancer: a review of current curative intent therapies. Curr Oncol (Toronto Ont) 29:4768–4778. https://doi.org/10.3390/curroncol29070378

    Article  Google Scholar 

  9. Martin M et al (2021) Activity of docetaxel, carboplatin, and doxorubicin in patient-derived triple-negative breast cancer xenografts. Sci Rep 11:7064. https://doi.org/10.1038/s41598-021-85962-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christowitz C et al (2019) Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 19. https://doi.org/10.1186/s12885-019-5939-z

  11. Kaklamani VG, Gradishar WJ (2003) Epirubicin versus doxorubicin: which is the anthracycline of choice for the treatment of breast cancer? Clin Breast Cancer 4(1):26–33. https://doi.org/10.3816/cbc.2003.s.012

    Article  Google Scholar 

  12. van der Zanden SY, Qiao X, Neefjes J (2021) New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J 288:6095–6111. https://doi.org/10.1111/febs.15583

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho C et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16:3267–3285. https://doi.org/10.2174/092986709788803312

    Article  CAS  PubMed  Google Scholar 

  14. Kim C et al (2018) Chemoresistance Evolution in Triple-negative breast Cancer delineated by single-cell sequencing. Cell 173:879–893e813. https://doi.org/10.1016/j.cell.2018.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nedeljković M, Damjanović A (2019) Mechanisms of Chemotherapy Resistance in Triple-negative breast Cancer-How we can rise to the challenge. Cells 8. https://doi.org/10.3390/cells8090957

  16. Chen NN et al (2023) Doxorubicin resistance in breast cancer is mediated via the activation of FABP5/PPARγ and CaMKII signaling pathway. Front Pharmacol 14. https://doi.org/10.3389/fphar.2023.1150861

  17. Al-Malky HS, Harthi A, S. E., Osman AM (2020) Major obstacles to doxorubicin therapy: cardiotoxicity and drug resistance. J Oncol Pharm Practice: Official Publication Int Soc Oncol Pharm Practitioners 26:434–444. https://doi.org/10.1177/1078155219877931

    Article  Google Scholar 

  18. Paramanantham A et al (2021) Doxorubicin-resistant TNBC cells exhibit Rapid Growth with Cancer Stem Cell-like properties and EMT phenotype, which can be transferred to parental cells through Autocrine Signaling. Int J Mol Sci 22. https://doi.org/10.3390/ijms222212438

  19. Turton NJ et al (2001) Gene expression and amplification in breast carcinoma cells with intrinsic and acquired doxorubicin resistance. Oncogene 20:1300–1306. https://doi.org/10.1038/sj.onc.1204235

    Article  CAS  PubMed  Google Scholar 

  20. Oda Y et al (1996) Expression of multidrug-resistance-associated protein gene in human soft-tissue sarcomas. J Cancer Res Clin Oncol 122:161–165. https://doi.org/10.1007/bf01366956

    Article  CAS  PubMed  Google Scholar 

  21. Ganapathy-Kanniappan S, Geschwind JF (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152. https://doi.org/10.1186/1476-4598-12-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng J et al (2021) Altered glycolysis results in drug-resistant in clinical tumor therapy. Oncol Lett 21:369. https://doi.org/10.3892/ol.2021.12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marcucci F, Rumio C (2021) Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia (New York N Y) 23:234–245. https://doi.org/10.1016/j.neo.2020.12.009

    Article  CAS  PubMed  Google Scholar 

  24. Bean JF et al (2014) Glycolysis inhibition and its effect in doxorubicin resistance in neuroblastoma. J Pediatr Surg 49:981–984 discussion 984. https://doi.org/10.1016/j.jpedsurg.2014.01.037

    Article  PubMed  Google Scholar 

  25. Pan C et al (2016) MiR-122 reverses the Doxorubicin-Resistance in Hepatocellular Carcinoma Cells through regulating the Tumor metabolism. PLoS ONE 11:e0152090. https://doi.org/10.1371/journal.pone.0152090

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu G, Wang H, Rui R, Wang Y, Li Y (2024) TRIP13 activates glycolysis to promote cell stemness and strengthen Doxorubicin Resistance of Colorectal Cancer cells. Curr Med Chem. https://doi.org/10.2174/0109298673255498231117100421

    Article  PubMed  Google Scholar 

  27. Cunha A, Silva PMA, Sarmento B, Queirós O (2023) Targeting glucose metabolism in Cancer cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 15. https://doi.org/10.3390/pharmaceutics15112610

  28. Huang Y (2023) Targeting glycolysis for cancer therapy using drug delivery systems. J Controlled Release: Official J Controlled Release Soc 353:650–662. https://doi.org/10.1016/j.jconrel.2022.12.003

    Article  CAS  Google Scholar 

  29. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532. https://doi.org/10.1038/cddis.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Sci (New York N Y) 298:1912–1934. https://doi.org/10.1126/science.1075762

    Article  ADS  CAS  Google Scholar 

  31. Dempster EL et al (2014) Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry 76:977–983. https://doi.org/10.1016/j.biopsych.2014.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun E, Liu K, Zhao K, Wang L (2019) Serine/threonine kinase 32 C is overexpressed in bladder cancer and contributes to tumor progression. Cancer Biol Ther 20:307–320. https://doi.org/10.1080/15384047.2018.1529098

    Article  CAS  PubMed  Google Scholar 

  33. Han CY, Patten DA, Richardson RB, Harper ME, Tsang BK (2018) Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes cancer 9:155–175. https://doi.org/10.18632/genesandcancer.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chelakkot C, Chelakkot VS, Shin Y, Song K (2023) Modulating glycolysis to Improve Cancer Therapy. Int J Mol Sci 24. https://doi.org/10.3390/ijms24032606

  35. Ganapathy-Kanniappan S et al (2010) 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 11:510–517. https://doi.org/10.2174/138920110791591427

    Article  CAS  PubMed  Google Scholar 

  36. Gomes MT et al (2021) 3-Bromopyruvate: a new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 229:108154. https://doi.org/10.1016/j.exppara.2021.108154

    Article  CAS  PubMed  Google Scholar 

  37. Ehrke E, Arend C, Dringen R (2015) 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes. J Neurosci Res 93:1138–1146. https://doi.org/10.1002/jnr.23474

    Article  CAS  PubMed  Google Scholar 

  38. Elfgang C et al (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96:6229–6234. https://doi.org/10.1073/pnas.96.11.6229

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463–473. https://doi.org/10.1016/0092-8674(95)90435-2

    Article  CAS  PubMed  Google Scholar 

  40. Day AH et al (2020) Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 11:1599–1606. https://doi.org/10.1039/c9sc05568a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hodel MR, Corbett AH, Hodel AE (2001) Dissection of a nuclear localization signal. J Biol Chem 276:1317–1325. https://doi.org/10.1074/jbc.M008522200

    Article  CAS  PubMed  Google Scholar 

  42. Parker JS et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncology: Official J Am Soc Clin Oncol 27:1160–1167. https://doi.org/10.1200/jco.2008.18.1370

    Article  Google Scholar 

  43. Gendoo DM et al (2016) Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer. Bioinf (Oxford England) 32:1097–1099. https://doi.org/10.1093/bioinformatics/btv693

    Article  CAS  Google Scholar 

  44. Hamaneh M, Yu YK (2023) A simple method for robust and accurate intrinsic subtyping of breast Cancer. Cancer Inform 22:11769351231159893. https://doi.org/10.1177/11769351231159893

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Huawei Xiao and Shaoyan Huang; Resources: Huawei Xiao, Lei Liu, and Shaoyan Huang; Data curation: Shaoyan Huang; Formal Analysis: Huawei Xiao, Lei Liu; Supervision: Shaoyan Huang; Validation: Huawei Xiao, Lei Liu; Investigation: Huawei Xiao, Lei Liu, and Shaoyan Huang; Visualization: Huawei Xiao; Methodology: Huawei Xiao and Lei Liu; Project administration: Shaoyan Huang; Writing – original draft: Huawei Xiao; Writing – review & editing: Huawei Xiao, Lei Liu, and Shaoyan Huang.

Corresponding author

Correspondence to Shaoyan Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Liu, L. & Huang, S. STK32C modulates doxorubicin resistance in triple-negative breast cancer cells via glycolysis regulation. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04989-z

Keywords

Navigation