Skip to main content
Log in

Green Pesticide High Activity Based on TiO2 Nanosuspension Incorporated Silver Microspheres Against Phytophthora palmivora

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cocoa pod production has experienced a significant decline due to attacks by the Phytophthora palmivora (P. palmivora) fungus, which is the main cause of cocoa pod rot. To overcome this problem, Titanium dioxide (TiO2) was chosen because of its potential as an antifungal, and its activity can be increased by adding silver nanoparticles (AgNPs). This research aims to determine the antifungal properties of TiO2–Ag nanosuspension on the growth of P. palmivora under exposure to UV, Visible and without irradiation. The sol–gel process was used to synthesize TiO2, and ultrasonics was used to integrate silver nanoparticles into TiO2. Characterization of UV–Vis diffuse reflectance spectroscopy (UV-DRS) shows a change in the energy gap from 3.24 to 2.82 eV. The Fourier confirmed the crystal structure of the TiO2-Ag anatase transform infrared spectroscopy (FTIR) spectrum, which showed the stretching vibration peak of the Ti–O and Ag–O bonds (463.88 cm−1). Particle size analysis (PSA) characterization revealed that the nanoscale of TiO2–Ag was 92.4 nm. The disc diffusion method was used to test the antifungal inhibitory of 0.1%, 0.3%, and 0.5% TiO2–Ag against P. palmivora. The antifungal activity of the TiO2–Ag showed strong resistance under exposure to visible light, and the optimum concentration of TiO2–Ag was 0.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ali SS, Shao J, Lary DJ, Strem MD, Meinhardt LW, Bailey BA (2017) Phytophthora megakarya and p. Palmivora, causal agents of black pod rot, induce similar plant defense responses late during infection of susceptible cacao pods. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00169

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torres GA, Sarria GA, Martinez G, Varon F, Drenth A, Guest DI (2016) Bud rot caused by phytophthora palmivora: a destructive emerging disease of oil palm. Phytopathology 106:320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW

    Article  CAS  PubMed  Google Scholar 

  3. Wong M-S, Sun D-S, Chang H-H (2010) Bactericidal performance of visible-light responsive Titania Photocatalyst with silver nanostructures. PLoS ONE 5:e10394. https://doi.org/10.1371/journal.pone.0010394

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868. https://doi.org/10.1007/s00253-011-3213-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahrens M, Fischer T, Zuber N, Yatsenko S, Hochrein T, Bastian M, Mela P (2022) Antimicrobial activity of a titanium dioxide additivated thermoset. Catalysts 12:829. https://doi.org/10.3390/catal12080829

    Article  CAS  Google Scholar 

  6. Ammendolia MG, De Berardis B (2022) Nanoparticle impact on the bacterial adaptation: focus on nano-Titania. Nanomaterials 12:3616. https://doi.org/10.3390/nano12203616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maulidiyah M, Natsir M, Fitrianingsih F, Arham Z, Wibowo D, Nurdin M (2017) Lignin degradation of oil palm empty fruit bunches using TiO2 photocatalyst as antifungal of Fusarium oxysporum. Orient J Chem 33:3101–3106. https://doi.org/10.13005/ojc/330651

    Article  CAS  Google Scholar 

  8. Alomary MN, Ansari MA (2021) Proanthocyanin-capped biogenic TiO2 nanoparticles with enhanced penetration, antibacterial and ROS mediated inhibition of bacteria proliferation and biofilm formation: a comparative approach. Chem A Eur J 27:5817–5829. https://doi.org/10.1002/chem.202004828

    Article  CAS  Google Scholar 

  9. Prakash J, Sun S, Swart HC, Gupta RK (2018) Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl Mater Today 11:82–135. https://doi.org/10.1016/j.apmt.2018.02.002

    Article  Google Scholar 

  10. Prakash J, Cho J, Mishra YK (2022) Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: scope against blocking the SARS-COV-2 spread. Micro Nano En 14:100100. https://doi.org/10.1016/j.mne.2021.100100

    Article  ADS  CAS  Google Scholar 

  11. Othman SH, Abdul Rashid S, Mohd Ghazi TI, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater 2012:1–10. https://doi.org/10.1155/2012/718214

    Article  CAS  Google Scholar 

  12. Anggraeni T, Umrah U, Esyanti RR, Aryantha INP (2014) Promoting Dolichoderus thoracicus as an agent to disperse Trichoderma sp., a Fungus that controls the black pod disease, central Sulawesi – Indonesia. J Math Fund Sci 46:41–49. https://doi.org/10.5614/j.math.fund.sci.2014.46.1.4

    Article  Google Scholar 

  13. Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22:7202. https://doi.org/10.3390/ijms22137202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nurdin M, Yanti NA, Suciani AHW, Maulidiyah AA, Wibowo D (2018) Efficiency of ilmenite photocatalyst material as modelling for antimicrobial activity. Asian J Chem 30:1387–1392. https://doi.org/10.14233/ajchem.2018.21270

    Article  CAS  Google Scholar 

  15. Nurdin M, Sari IDW, Mardhatillah M, Herdianto N, Wibowo D, Maulidiyah M, Bijang C (2023) Highly ecofriendly inorganic pesticide based on TiO2 incorporated with nano-carbon composites for phytophthora palmivora fungus disinfection. Indian J Microbiol 63:216–221. https://doi.org/10.1007/s12088-023-01076-7

    Article  CAS  PubMed  Google Scholar 

  16. Fernandes M, González-Ballesteros N, da Costa A, Machado R, Gomes AC, Rodríguez-Argüelles MC (2023) Antimicrobial and anti-biofilm activity of silver nanoparticles biosynthesized with Cystoseira algae extracts. J Biol Inorg Chem 28:439–450. https://doi.org/10.1007/s00775-023-01999-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdelaziz AM, Elshaer MA, Abd-Elraheem MA, Ali OMOM, Haggag MI, El-Sayyad GS, Attia MS (2023) Ziziphus spina-christi extract-stabilized novel silver nanoparticle synthesis for combating Fusarium oxysporum-causing pepper wilt disease: in vitro and in vivo studies. Arch Microbiol 205:69. https://doi.org/10.1007/s00203-023-03400-7

    Article  CAS  PubMed  Google Scholar 

  18. Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS (2015) Inhibition of Phytophthora parasitica and P. capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia absinthium. Phytopathology 105:1183–1190. https://doi.org/10.1094/PHYTO-01-15-0006-R

    Article  CAS  PubMed  Google Scholar 

  19. Gomaa NA (2021) Green synthesis of silver nanoparticle by plant extracts to control tomato wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Int J Sustain Dev Sci 4:1–14. https://doi.org/10.21608/ijsrsd.2021.211253

    Article  Google Scholar 

  20. Rani A, Singh R, Kumar P, Singh C (2015) Nanotechnology: an emerging strategy against phyto-pathogens in agricultural crops. Adv Life Sci 4:35–37

  21. Elbushra H, Ahmed M, Wardi H, Eassa N (2018) Synthesis and characterization of TiO2 using sol-gel method at different annealing temperatures. MRS Adv 3:2527–2535. https://doi.org/10.1557/adv.2018.230

    Article  CAS  Google Scholar 

  22. Aravind M, Amalanathan M, Mary MSM (2021) Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci 3:409. https://doi.org/10.1007/s42452-021-04281-5

    Article  Google Scholar 

  23. Nurdin M, Watoni AH, Arham Z, Yanti NA, Marlini S, Maulidiyah M, Irwan I (2022) Strong inhibition of silver-doped TiO2 nanoparticles against P. palmivora in visible light. BioNanoScience 12:351–358. https://doi.org/10.1007/s12668-022-00963-5

    Article  Google Scholar 

  24. Nurdin M, Prabowo OA, Arham Z, Wibowo D, Maulidiyah M, Saad SKM, Umar AA (2019) Highly sensitive fipronil pesticide detection on ilmenite (FeO.TiO2)-carbon paste composite electrode. Surf Interfaces 16:108–113. https://doi.org/10.1016/j.surfin.2019.05.008

    Article  CAS  Google Scholar 

  25. Maulidiyah M, Azis T, Lindayani L, Wibowo D, Salim LOA, Aladin A, Nurdin M (2019) Sol-gel TiO2/carbon paste electrode nanocomposites for electrochemical-assisted sensing of fipronil pesticide. J Electrochem Sci Technol 10:394–401. https://doi.org/10.33961/jecst.2019.00178

    Article  CAS  Google Scholar 

  26. Natsir M, Maulidiyah M, Watoni AH, Arif J, Sari A, Salim LOA, Nurdin M (2021) Synthesis and charcterization of Cu-doped TiO2 (Cu/TiO 2) nanoparticle as antifungal phytophthora palmivora. J Phys: Conf Series 1899:012039. https://doi.org/10.1088/1742-6596/1899/1/012039

    Article  CAS  Google Scholar 

  27. Nurdin M (2014) Fabrication Of TiO2 /Ti nanotube electrode by anodizing method and its application on photoelectrocatalytic system. Int J Sci Technol Res 3. Retrieved from www.ijstr.org

  28. Mursalim LO, Ruslan AM, Safitri RA, Azis T, Maulidiyah Wibowo D, Nurdin M (2017) Synthesis and photoelectrocatalytic performance of Mn-N-TiO2/Ti electrode for electrochemical sensor. IOP Conf Series: Mater Sci Eng 267:012006. https://doi.org/10.1088/1757-899X/267/1/012006

    Article  Google Scholar 

  29. Nurdin M, Azis T, Maulidiyah M, Aladin A, Hafid NA, Salim LOA, Wibowo D (2018) Photocurrent responses of Metanil Yellow and Remazol red B organic dyes by using TiO2 /Ti electrode. IOP Conf Series: Mater Sci Eng 367:012048. https://doi.org/10.1088/1757-899X/367/1/012048

    Article  Google Scholar 

  30. Stucchi M, Bianchi CL, Argirusis C, Pifferi V, Neppolian B, Cerrato G, Boffito DC (2018) Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. Ultrason Sonochem 40:282–288. https://doi.org/10.1016/j.ultsonch.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  31. Suciu R-C, Zagrai M, Popa A, Toloman D, Berghian-Grosan C, Tudoran C, Stefan M (2023) The influence of Ag+/Ti4+ ratio on structural, optical and photocatalytic properties of MWCNT–TiO2–Ag nanocomposites. Inorganics 11:249. https://doi.org/10.3390/inorganics11060249

    Article  CAS  Google Scholar 

  32. Lin X, Li Y (2021) Preparation of TiO2/Ag[BMIM]Cl composites and their visible light photocatalytic properties for the degradation of rhodamine B. Catalysts 11:661. https://doi.org/10.3390/catal11060661

    Article  CAS  Google Scholar 

  33. Chauhan R, Kumar A, Chaudhary RP (2012) Structural and optical characterization of Ag-doped TiO2 nanoparticles prepared by a sol–gel method. Res Chem Intermed 38:1443–1453. https://doi.org/10.1007/s11164-011-0475-8

    Article  CAS  Google Scholar 

  34. Živojinović J, Pavlović VP, Kosanović D, Marković S, Krstić J, Blagojević VA, Pavlović VB (2017) The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. J Alloy Compd 695:863–870. https://doi.org/10.1016/j.jallcom.2016.10.159

    Article  CAS  Google Scholar 

  35. Najibi Ilkhechi N, Mozammel M, Yari Khosroushahi A (2021) Antifungal effects of ZnO, TiO2 and ZnO-TiO2 nanostructures on Aspergillus flavus. Pestic Biochem Physiol 176:104869. https://doi.org/10.1016/j.pestbp.2021.104869

    Article  CAS  PubMed  Google Scholar 

  36. Wu C, Dong X, Wang L, Zhang L, Liu X (2022) Preparation of N-TiO2 /SiO2 composites by solvothermal method and their photocatalytic properties. Mater Res Express 9:055002. https://doi.org/10.1088/2053-1591/ac4b4e

    Article  ADS  CAS  Google Scholar 

  37. Shen J-H, Li M-M, Chu L-F, Guo C-X, Guo Y-J, Guo Y-P (2021) Effect mechanism of copper ions on photocatalytic activity of TiO2/graphene oxide composites for phenol-4-sulfonic acid photodegradation. J Colloid Interface Sci 586:563–575. https://doi.org/10.1016/j.jcis.2020.10.121

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO 2 nanocatalyst. Chem Mater 17:6349–6353. https://doi.org/10.1021/cm052047v

    Article  CAS  Google Scholar 

  39. Lu X, Lv X, Sun Z, Zheng Y (2008) Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur Polymer J 44:2476–2481. https://doi.org/10.1016/j.eurpolymj.2008.06.002

    Article  CAS  Google Scholar 

  40. Chacon-Argaez U, Cedeño-Caero L, Cadena-Nava RD, Ramirez-Acosta K, Moyado SF, Sánchez-López P, Alonso Núñez G (2023) Photocatalytic activity and biocide properties of Ag–TiO2 composites on cotton fabrics. Materials 16:4513. https://doi.org/10.3390/ma16134513

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Yan L, He X, Li J, Wang D (2016) Controlled fabrication of Ag/TiO2 nanofibers with enhanced stability of photocatalytic activity. J Mater Sci: Mater Electron 27:5190–5196. https://doi.org/10.1007/s10854-016-4412-x

    Article  CAS  Google Scholar 

  42. Nandanwar R, Ingh P, Syed FF, Haque FZ (2014) Preparation of TiO2/SiO2 nanocomposite with non-ionic surfactants via sol-gel process and their photocatalytic study. Orient J Chem 30:1577–1584. https://doi.org/10.13005/ojc/300417

    Article  CAS  Google Scholar 

  43. Praveen P, Viruthagiri G, Mugundan S, Shanmugam N (2014) Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – synthesized via sol–gel route. Spectrochim Acta Part A Mol Biomol Spectrosc 117:622–629. https://doi.org/10.1016/j.saa.2013.09.037

    Article  ADS  CAS  Google Scholar 

  44. Vakhrushev AYu, Boitsova TB (2021) TiO2 and TiO2/Ag nanofibers: template synthesis, structure, and photocatalytic properties. J Porous Mater 28:1023–1030. https://doi.org/10.1007/s10934-021-01061-9

    Article  CAS  Google Scholar 

  45. Aziz S, Javed R, Nowak A, Liaqat S, Khan ZUH, Ahmad N, Muhammad N (2023) Effects of TiO2, Ag-TiO2, and Cu-TiO2 nanoparticles on mechanical and anticariogenic properties of conventional pit and fissure sealants. OpenNano 14:100185. https://doi.org/10.1016/j.onano.2023.100185

    Article  Google Scholar 

  46. Wei J, Zhao L, Peng S, Shi J, Liu Z, Wen W (2008) Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects. J Sol-Gel Sci Technol 47:311–315. https://doi.org/10.1007/s10971-008-1787-z

    Article  CAS  Google Scholar 

  47. Praveen P, Viruthagiri G, Mugundan S, Shanmugam N (2014) Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles - synthesized via sol-gel route. Spectrochim Acta - Part A: Mol Biomol Spectrosc 117:622–629. https://doi.org/10.1016/j.saa.2013.09.037

    Article  ADS  CAS  Google Scholar 

  48. Watoni AH, Yanti NA, Marlini S, Muzakkar MZ, Maulidiyah M, Irwan I, Nurdin M (2021) Synthesis of TiO2 -Ag composite through ultrasonic batch cleaning technique as a candidate for antifungal agent Phytophthora palmivora. J Phys: Conf Series 1763:012070. https://doi.org/10.1088/1742-6596/1763/1/012070

    Article  CAS  Google Scholar 

  49. Jung J-H, Kim S-W, Min J-S, Kim Y-J, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38:39. https://doi.org/10.4489/MYCO.2010.38.1.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Devi JS, Bhimba BV (2014) Antibacterial and Antifungal activity of silver nanoparticles synthesized using Hypnea muciformis. Biosci Biotechnol Res Asia 11:235–238. https://doi.org/10.13005/bbra/1260

    Article  CAS  Google Scholar 

  51. Nguyen DH, Vo TNN, Le NTT, Thi DPN, Thi TTH (2020) Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity. Green Process Synth 9:429–439. https://doi.org/10.1515/gps-2020-0044

    Article  Google Scholar 

  52. Thu Hoai PT, Lam TD, Mai Huong NT, Van Anh MT (2023) Removal of ethylene by synthesized Ag/TiO2 photocatalyst under visible light irradiation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.138607

    Article  PubMed  Google Scholar 

  53. Narkbuakaew T, Sattayaporn S, Saito N, Sujaridworakun P (2022) Investigation of the Ag species and synergy of Ag-TiO2 and g-C3N4 for the enhancement of photocatalytic activity under UV–Visible light irradiation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.151617

    Article  Google Scholar 

  54. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072. https://doi.org/10.1021/jp0564400

    Article  CAS  PubMed  Google Scholar 

  55. Komaraiah D, Radha E, Sivakumar J, Ramana Reddy MV, Sayanna R (2020) Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt Mater 108:110401. https://doi.org/10.1016/j.optmat.2020.110401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZA: Writing-original draft, Investigation, Formal analysis, Data curation, Conceptualization. AZAI: Investigation. ME: Formal analysis, Investigation. AHW: Formal analysis, validation, methodology. II: Formal analysis, Investigation. MN: Conceptualization, Writing-original draft, Data curation. MM: Methodology, Conceptualization, Data curation.

Corresponding author

Correspondence to Zul Arham.

Ethics declarations

Conflict of interest

Zul Arham declares that he has no conflict of interest. Annisa Zalfa Ikhwan declares that she has no conflict of interest. Muhammad Edihar declares that he has no conflict of interest. Abdul Haris Watoni declares that he has no conflict of interest. Irwan Irwan declares that he has no conflict of interest. Muhammad Nurdin declares that he has no conflict of interest. Maulidiyah Maulidiyah declares that she has no conflict of interest.

Consent for Publication

The manuscript in full has not been published anywhere.

Human and Animal Participants

This study does not contain experiments that involve humans or animals other than the authors who performed the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arham, Z., Al Ikhwan, A.Z., Edihar, M. et al. Green Pesticide High Activity Based on TiO2 Nanosuspension Incorporated Silver Microspheres Against Phytophthora palmivora. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01239-0

Keywords

Navigation