Skip to main content
Log in

Errors and losses impact on planar integrated photonic circuits fidelity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Every manufacturing or synthesis process suffers from possible errors or inaccuracies. Thus, this article presents a theoretical study on how such imperfections affect the efficiency of an planar integrated photonic circuit. Three sources of error were analyzed: absorption and scattering phenomena, inaccuracies in the directional couplers physical dimensions and uncertainties in the phase shifters implementation. As a result, graphs that indicate the behaviour of the photonic circuit efficiency, described by a quantity called fidelity, in function of the source of errors were obtained. These graphs allow to deduce scenarios where, even under the action of such imperfections, its fidelity still presents high values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

All data that supports the findings of this study are included within the article.

References

  1. S. Atzeni, Integrated photonic devices for quantum information processing (2020)

  2. A.W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller, Hybrid integrated quantum photonic circuits. Nat. Photonics 14(5), 285–298 (2020)

    Article  ADS  Google Scholar 

  3. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M.J. Steel, M.J. Withford, A. Szameit, Laser written circuits for quantum photonics. Laser Photonics Rev. 9(4), 363–384 (2015)

    Article  ADS  Google Scholar 

  4. J. Wang, F. Sciarrino, A. Laing, M.G. Thompson, Integrated photonic quantum technologies. Nat. Photonics 14(5), 273–284 (2020)

    Article  ADS  Google Scholar 

  5. P. Lima, W. Cardoso, S. Pádua, Integrated photonic circuits for contextuality tests via sequential measurements in three-level quantum systems. Opt. Express 32(4), 5550–5566 (2024)

    Article  ADS  Google Scholar 

  6. L. Sansoni, Integrated Devices for Quantum Information with Polarization Encoded Qubits (Springer, Berlin, 2014)

    Book  Google Scholar 

  7. M. Davanco, J. Liu, L. Sapienza, C.Z. Zhang, J.V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, K. Srinivasan, Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017)

    Article  ADS  Google Scholar 

  8. A.W. Elshaari, I.E. Zadeh, A. Fognini, M.E. Reimer, D. Dalacu, P.J. Poole, V. Zwiller, K.D. Jöns, On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8(1), 379 (2017)

    Article  ADS  Google Scholar 

  9. W. Geng, C. Zhang, Y. Zheng, J. He, C. Zhou, Y. Kong, Stable quantum key distribution using a silicon photonic transceiver. Opt. Express 27(20), 29045–29054 (2019)

    Article  ADS  Google Scholar 

  10. N.H. Wan, L. Tsung-Ju, K.C. Chen, M.P. Walsh, M.E. Trusheim, L. De Santis, E.A. Bersin, I.B. Harris, S.L. Mouradian, I.R. Christen et al., Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583(7815), 226–231 (2020)

    Article  ADS  Google Scholar 

  11. G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Laser written waveguide photonic quantum circuits. Opt. Express 17(15), 12546–12554 (2009)

    Article  ADS  Google Scholar 

  12. V. Bharadwaj, J.P. Ottavia Jedrkiewicz, B.S. Hadden, M.R. Vázquez, P. Dentella, T.T. Fernandez, A. Chiappini, A.N. Giakoumaki, T. Le Phu et al., Femtosecond laser written photonic and microfluidic circuits in diamond. J. Phys. Photonics 1(2), 022001 (2019)

    Article  ADS  Google Scholar 

  13. R. Osellame. Manipulation of quantum information in fs-laser-written photonic circuits. In Quantum Information and Measurement. (Optica Publishing Group, 2019), pp. S2C–1

  14. M. Poot, C. Schuck, X. Ma, X. Guo, H.X. Tang, Design and characterization of integrated components for sin photonic quantum circuits. Opt. Express 24(7), 6843–6860 (2016)

    Article  ADS  Google Scholar 

  15. Z. Chaboyer, T. Meany, L.G. Helt, M.J. Withford, M.J. Steel, Tunable quantum interference in a 3d integrated circuit. Sci. Rep. 5(1), 9601 (2015)

    Article  ADS  Google Scholar 

  16. K. Poulios, R. Keil, D. Fry, J.D.A. Meinecke, J.C.F. Matthews, A. Politi, M. Lobino, M. Gräfe, M. Heinrich, S. Nolte et al., Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 112(14), 143604 (2014)

    Article  ADS  Google Scholar 

  17. M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D.N. Christodoulides, A. Szameit, On-chip generation of high-order single-photon w-states. Nat. Photonics 8(10), 791–795 (2014)

    Article  ADS  Google Scholar 

  18. W.R. Cardoso, D.F. Barros, L. Neves, S. Pádua, Three-dimensional compact photonic circuits for quantum state tomography of multipath qudits in any finite dimension. J. Opt. 23(11), 115202 (2021)

    Article  ADS  Google Scholar 

  19. W.R. Cardoso, P.M.R. Lima, R.O. Vianna, S. Pádua, Quantum coherence measurement of qudit systems using three-dimensional photonic circuits. Phys. Rev. A 102(3), 032609 (2020)

    Article  ADS  Google Scholar 

  20. W.R. Clements, P.C. Humphreys, B.J. Metcalf, W. Steven Kolthammer, I.A. Walmsley, Optimal design for universal multiport interferometers. Optica 3(12), 1460–1465 (2016)

    Article  ADS  Google Scholar 

  21. M.J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology, vol. 2 (CRC Press, 2011)

    Book  Google Scholar 

  22. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’brien, Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)

    Article  ADS  Google Scholar 

  23. A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325(5945), 1221–1221 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, J.L. O’brien, Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2(1), 224 (2011)

    Article  ADS  Google Scholar 

  25. J.C.F. Matthews, K. Poulios, J.D.A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M.G. Thompson, J.L. O’Brien, Observing fermionic statistics with photons in arbitrary processes. Sci. Rep. 3(1), 1539 (2013)

    Article  ADS  Google Scholar 

  26. K. Miura Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)

    Article  ADS  Google Scholar 

  27. E. Lages, W. Cardoso, G.F.B. Almeida, L. Siman, O. Mesquita, C.R. Mendonça, U. Agero, S. Pádua, Measurement of the refractive index profile of waveguides using defocusing microscopy. Appl. Opt. 57(29), 8699–8704 (2018)

    Article  ADS  Google Scholar 

  28. R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, vol. 123 (Springer, Berlin, 2012)

    Book  Google Scholar 

  29. Y. Zhang, G. Cheng, G. Huo, Y. Wang, W. Zhao, C. Mauclair, R. Stoian, R. Hui, The fabrication of circular cross-section waveguide in two dimensions with a dynamical slit. Laser Phys. 19, 2236–2241 (2009)

    Article  ADS  Google Scholar 

  30. G.D. Martin Ams, D.J.S. Marshall, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13(15), 5676–5681 (2005)

    Article  ADS  Google Scholar 

  31. F.H. Köklü, S.B. Ippolito, B.B. Goldberg, M.S. Ünlü, Subsurface microscopy of integrated circuits with angular spectrum and polarization control. Opt. Lett. 34(8), 1261–1263 (2009)

    Article  ADS  Google Scholar 

  32. D. Tan, Z. Wang, X. Beibei, J. Qiu, Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photonics 3(2), 024002–024002 (2021)

    Article  ADS  Google Scholar 

  33. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett. 28(1), 55–57 (2003)

    Article  ADS  Google Scholar 

  34. G. Laufer, Introduction to Optics and Lasers in Engineering (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  35. P. Roldán-Varona, D. Pallarés-Aldeiturriaga, L. Rodríguez-Cobo, J.M. López-Higuera, Slit beam shaping technique for femtosecond laser inscription of enhanced plane-by-plane fbgs. J. Lightwave Technol. 38(16), 4526–4532 (2020)

    Article  ADS  Google Scholar 

  36. C.-Y. Wang, J. Gao, X.-M. Jin, On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Opt. Lett. 44(1), 102–105 (2019)

    Article  ADS  Google Scholar 

  37. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, G. Cerullo, Femtosecond writing of active optical waveguides with astigmatically shaped beams. JOSA B 20(7), 1559–1567 (2003)

    Article  ADS  Google Scholar 

  38. Y. Wang, L. Yong-Heng, J. Gao, K. Sun, Z.-Q. Jiao, H. Tang, X.-M. Jin, Quantum topological boundary states in quasi-crystals. Adv. Mater. 31(49), 1905624 (2019)

    Article  Google Scholar 

  39. M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58 (1994)

    Article  ADS  Google Scholar 

  40. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Oxford, 2007)

    Google Scholar 

  41. C. Flynn, H. Cao, B.E. Applegate, T.S. Tkaczyk, Fabrication of waveguide directional couplers using 2-photon lithography. Opt. Express 31(16), 26323–26334 (2023)

    Article  ADS  Google Scholar 

  42. A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, Control of directional evanescent coupling in fs laser written waveguides. Opt. Express 15(4), 1579–1587 (2007)

    Article  ADS  Google Scholar 

  43. A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino, Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 7(7), 545–549 (2013)

    Article  ADS  Google Scholar 

  44. I.V. Dyakonov, M.Y. Saygin IV., A.A.K. Kondratyev, S.S. Straupe, S.P. Kulik, Laser-written polarizing directional coupler with reduced interaction length. Opt. Lett. 42(20), 4231–4234 (2017)

    Article  ADS  Google Scholar 

  45. S. Liu, J. Feng, Y. Tian, H. Zhao, L. Jin, B. Ouyang, J. Zhu, J. Guo, Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron 15(1), 9 (2022)

    Article  Google Scholar 

  46. M.R. Watts, J. Sun, C. DeRose, D.C. Trotter, R.W. Young, G.N. Nielson, Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38(5), 733–735 (2013)

    Article  ADS  Google Scholar 

  47. H.H. Lu, J.M. Lukens, N.A. Peters, O.D. Odele, D.E. Leaird, A.M. Weiner, P. Lougovski, Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120(3), 030502 (2018)

    Article  ADS  Google Scholar 

  48. W.R. Cardoso, D.F. Barros, M.R. Barros, S. Pádua, Implementing positive-operator-valued-measurement elements in photonic circuits for performing minimum quantum state tomography of path qudits. Phys. Rev. A 99(6), 062324 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Carlos Monken for raising this issue in my thesis defense.

Funding

This research was supported by the Brazilian agencies CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico and Capes - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilder R. Cardoso.

Ethics declarations

Conflict of interest

The author declare no conflicts of interest.

Appendices

Appendix A: Circuit matrix for the five-dimensional case

To write the matrix that describes the unitary operation performed on an input state by the photonic circuit shown in Fig. 1, we must first decompose it into simpler sequential operations. In this case, we will decompose it into six operations. The first of these is represented by the five parallel phase shifters located at the beginning of the circuit. This first operation can be described by the following matrix:

$$\begin{aligned} \hat{T}_1=\left( \begin{array}{ccccc} e^{{i\phi _1}} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad e^{{i\phi _2}} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad e^{i\phi _3} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad e^{i\phi _4} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad e^{i\phi _5} \\ \end{array}\right) . \end{aligned}$$
(A1)

The other operations are performed by vertical arrangements of directional couplers. Sometimes we have a coupler between the first two paths and another coupler acting between the third and fourth paths, sometimes we have a coupler between the second and third paths and another coupler acting between the last two paths. Thus, these operations can be written in matrix form as follows

$$\begin{aligned} \hat{T}_2=\left( \begin{array}{ccccc} e^{i\phi _6}\sqrt{r_1} &{}\quad e^{i\phi _6}\sqrt{t_1} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \sqrt{t_1} &{}\quad -\sqrt{r_1} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad e^{i\phi _7}\sqrt{r_2} &{}\quad e^{i\phi _7}\sqrt{t_2} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \sqrt{t_2} &{}\quad -\sqrt{r_2} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ \end{array}\right) , \end{aligned}$$
(A2)
$$\begin{aligned} \hat{T}_3=\left( \begin{array}{ccccc} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad e^{i\phi _8}\sqrt{r_3} &{}\quad e^{i\phi _8}\sqrt{t_3} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \sqrt{t_3} &{}\quad -\sqrt{r_3} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad e^{i\phi _9}\sqrt{r_4} &{}\quad e^{i\phi _9}\sqrt{t_4} \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \sqrt{t_4} &{}\quad -\sqrt{r_4} \\ \end{array}\right) , \end{aligned}$$
(A3)
$$\begin{aligned} \hat{T}_4=\left( \begin{array}{ccccc} e^{i\phi _{10}}\sqrt{r_5} &{}\quad e^{i\phi _{10}}\sqrt{t_5} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \sqrt{t_5} &{}\quad -\sqrt{r_5} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad e^{i\phi _{11}}\sqrt{r_6} &{}\quad e^{i\phi _{11}}\sqrt{t_6} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \sqrt{t_6} &{}\quad -\sqrt{r_6} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ \end{array}\right) , \end{aligned}$$
(A4)
$$\begin{aligned} \hat{T}_5=\left( \begin{array}{ccccc} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad e^{i\phi _{12}}\sqrt{r_7} &{}\quad e^{i\phi _{12}}\sqrt{t_7} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \sqrt{t_7} &{}\quad -\sqrt{r_7} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad e^{i\phi _{13}}\sqrt{r_8} &{}\quad e^{i\phi _{13}}\sqrt{t_8} \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \sqrt{t_8} &{}\quad -\sqrt{r_8} \\ \end{array}\right) , \end{aligned}$$
(A5)
$$\begin{aligned} \hat{T}_6=\left( \begin{array}{ccccc} e^{i\phi _{14}}\sqrt{r_9} &{}\quad e^{i\phi _{14}}\sqrt{t_9} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \sqrt{t_9} &{}\quad -\sqrt{r_9} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad e^{i\phi _{15}}\sqrt{r_{10}} &{}\quad e^{i\phi _{15}}\sqrt{t_{10}} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \sqrt{t_{10}} &{}\quad -\sqrt{r_{10}} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ \end{array}\right) . \end{aligned}$$
(A6)

Once these matrices that describe the simplest sequential operations have been determined, the matrix that determines the circuit as a whole will be given by

$$\begin{aligned} \hat{A}=\hat{T}_{6}\cdot \hat{T}_{5}\cdot \hat{T}_{4}\cdot \hat{T}_{3}\cdot \hat{T}_{2}\cdot \hat{T}_{1}. \end{aligned}$$
(A7)

Appendix B: Details about fidelity for the two-dimensional case

If we consider the photonic circuit for \(N=2\), we will see that it consists of only one directional coupler and one phase shifter. Thus, the matrices representing the ideal circuit and the lossy circuit will be given by

$$\begin{aligned} \hat{A}=\left( \begin{array}{cc} e^{i\phi }\sqrt{r} &{}\quad e^{i\phi }\sqrt{t} \\ \sqrt{t} &{}\quad -\sqrt{r} \end{array}\right) ,\quad \hat{B}=\left( \begin{array}{cc} e^{i\phi }\sqrt{\delta r} &{}\quad e^{i\phi }\sqrt{\delta t} \\ \sqrt{\delta t} &{}\quad -\sqrt{\delta r} \end{array}\right) . \end{aligned}$$
(B1)

Remembering that we are considering here only losses due to absorption and scattering of photons. To calculate the fidelity between these two operators, we will use Eq. (14). That way, we will first calculate the values of Tr\((\hat{A}^{\dagger }\hat{B})\) and Tr\((\hat{B}^{\dagger }\hat{B})\), obtaining

$$\begin{aligned} \hat{A}^{\dagger }\hat{B}&=\left( \begin{array}{cc} e^{-i\phi }\sqrt{r} &{}\quad \sqrt{t} \\ e^{-i\phi }\sqrt{t} &{}\quad -\sqrt{r} \end{array}\right) \cdot \left( \begin{array}{cc} e^{i\phi }\sqrt{\delta r} &{}\quad e^{i\phi }\sqrt{\delta t} \\ \sqrt{\delta t} &{}\quad -\sqrt{\delta r} \end{array}\right) \nonumber \\&=\left( \begin{array}{cc} \sqrt{\delta } &{}\quad 0 \\ 0 &{}\quad \sqrt{\delta } \end{array}\right) \quad \Rightarrow \quad \text {Tr}(\hat{A}^{\dagger }\hat{B})=2\sqrt{\delta }, \end{aligned}$$
(B2)

and

$$\begin{aligned} \hat{B}^{\dagger }\hat{B}&=\left( \begin{array}{cc} e^{-i\phi }\sqrt{\delta r} &{}\quad \sqrt{\delta t} \\ e^{-i\phi }\sqrt{\delta t} &{}\quad -\sqrt{\delta r} \end{array}\right) \cdot \left( \begin{array}{cc} e^{i\phi }\sqrt{\delta r} &{}\quad e^{i\phi }\sqrt{\delta t} \\ \sqrt{\delta t} &{}\quad -\sqrt{\delta r} \end{array}\right) \nonumber \\&=\left( \begin{array}{cc} \delta &{}\quad 0 \\ 0 &{}\quad \delta \end{array}\right) \quad \Rightarrow \quad \text {Tr}(\hat{B}^{\dagger }\hat{B})=2\delta .\qquad \end{aligned}$$
(B3)

With the results presented in Eq. (B2) and (B3), we can calculate the fidelity between the operators \(\hat{A}\) and \(\hat{B}\), obtaining

$$\begin{aligned} F(\hat{A},\hat{B})=\left| \dfrac{2\sqrt{\delta }}{\sqrt{4\delta }}\right| ^2 \quad \Rightarrow \quad F(\hat{A},\hat{B})=1. \end{aligned}$$
(B4)

Thus, for the semi-classical case, we have that the fidelity is always equal to 1 as shown in Fig. 3a. For the quantum case, this result does not apply, as we will show below. Let’s imagine the performance of a two-path photonic circuit in a state of the type \(\left| {\psi }\right\rangle =\alpha \left| {0}\right\rangle +\beta \left| {1}\right\rangle\). The final state for the ideal case will be given by

$$\begin{aligned} \left| {\psi ^{\prime }}\right\rangle&=\hat{A}\left| {\psi }\right\rangle =\left( \begin{array}{cc} e^{i\phi }\sqrt{r} &{}\quad e^{i\phi }\sqrt{t} \\ \sqrt{t} &{}\quad -\sqrt{r} \end{array}\right) \cdot \left( \begin{array}{c} \alpha \\ \beta \end{array}\right) \nonumber \\ \Rightarrow \quad \left| {\psi ^{\prime }}\right\rangle&=\left( \begin{array}{c} e^{i\phi }\sqrt{r}\alpha + e^{i\phi }\sqrt{t}\beta \\ \sqrt{t} \alpha -\sqrt{r}\beta \end{array}\right) =\left( \begin{array}{c} \alpha ^{\prime } \\ \beta ^{\prime } \end{array}\right) . \end{aligned}$$
(B5)

For the case where there are photon losses, we have

$$\begin{aligned} \left| {\psi ^{\prime \prime }}\right\rangle&=\hat{B}\left| {\psi }\right\rangle =\left( \begin{array}{cc} e^{i\phi }\sqrt{\delta r} &{}\quad e^{i\phi }\sqrt{\delta t} \\ \sqrt{\delta t} &{}\quad -\sqrt{\delta r} \end{array}\right) \cdot \left( \begin{array}{c} \alpha \\ \beta \end{array}\right) \nonumber \\ \Rightarrow \quad \left| {\psi ^{\prime \prime }}\right\rangle&=\left( \begin{array}{c} e^{i\phi }\sqrt{\delta r}\alpha + e^{i\phi }\sqrt{\delta t}\beta \\ \sqrt{\delta t} \alpha -\sqrt{\delta r}\beta \end{array}\right) =\left( \begin{array}{c} \alpha ^{\prime \prime } \\ \beta ^{\prime \prime } \end{array}\right) . \end{aligned}$$
(B6)

Note that we can rewrite the case with losses as

$$\begin{aligned} \left| {\psi ^{\prime \prime }}\right\rangle =\sqrt{\delta }\left( \begin{array}{c} \alpha ^{\prime } \\ \beta ^{\prime } \end{array}\right) . \end{aligned}$$
(B7)

Therefore, the probability of detecting a photon at the outputs of this device will be \(|\alpha ^{\prime \prime }|^2=\delta |\alpha ^{\prime }|^2\) and \(|\beta ^{\prime \prime }|^2=\delta |\beta ^{\prime }|^2\). This implies a reduction in the probability of the photon being detected at any output by a factor \(\delta\). Furthermore, there is a possibility that the photon will not be detected, that is, there is a probability that the photon will be absorbed or scattered during its passage through the circuit. This probability is equal to \(1-\delta\). On the other hand, the fidelity between these two final states can be calculated using the following equation

$$\begin{aligned} F_q(\left| {\psi ^{\prime }}\right\rangle ,\left| {\psi ^{\prime \prime }}\right\rangle )=|\left\langle {\psi ^{\prime }|\psi ^{\prime \prime }}\right\rangle |^2 \nonumber \\ \Rightarrow \quad F_q(\left| {\psi ^{\prime }}\right\rangle ,\left| {\psi ^{\prime \prime }}\right\rangle )&=\delta . \end{aligned}$$
(B8)

Appendix C: Unbalanced Coefficients Within the Device

In carrying out this brief analysis, we will consider a photonic circuit for the case \(N=5\), and for simplicity, we will set \(r=t=1/2\) for all directional couplers and \(\phi =0\) for all phase shifters. For an initial state of the form \(\left| {\phi }\right\rangle =\sum _{i=1}^{5}a_i\left| {i}\right\rangle\), after the operation of the first column of directional couplers in the ideal circuit case, we will have the following state

$$\begin{aligned} \left| {\phi }\right\rangle =\dfrac{1}{\sqrt{2}}\begin{pmatrix} a_1+a_2 \\ a_1-a_2 \\ a_3+a_4 \\ a_3-a_4 \\ a_5\sqrt{2} \end{pmatrix}. \end{aligned}$$
(C1)

After the operation of the first column of directional couplers in the circuit with losses, we will have

$$\begin{aligned} \left| {\phi '}\right\rangle =\dfrac{1}{\sqrt{2}}\begin{pmatrix} (a_1+a_2)\sqrt{\delta } \\ (a_1-a_2)\sqrt{\delta } \\ (a_3+a_4)\sqrt{\delta } \\ (a_3-a_4)\sqrt{\delta } \\ a_5\sqrt{2} \end{pmatrix}. \end{aligned}$$
(C2)

Comparing Eqs. (C1) and (C2), we see that in the state \(\left| {\phi '}\right\rangle\), only four out of the five coefficients are multiplied by the factor \(\sqrt{\delta }\). This creates an imbalance among the coefficients, as the pairwise ratios between the coefficients will not always result in the same value. This imbalance becomes more evident when analyzing the states after passing through the second column of directional couplers. For the lossless case, we have

$$\begin{aligned} \left| {\varphi }\right\rangle =\dfrac{1}{\sqrt{2}}\begin{pmatrix} a_1+a_2 \\ (a_1-a_2+a_3+a_4)/\sqrt{2} \\ (a_1-a_2-a_3-a_4)/\sqrt{2} \\ a_5+(a_3-a_4)/\sqrt{2} \\ -a_5+(a_3-a_4)/\sqrt{2} \end{pmatrix}. \end{aligned}$$
(C3)

For the case with losses, however

$$\begin{aligned} \left| {\varphi '}\right\rangle =\sqrt{\dfrac{\delta }{2}}\begin{pmatrix} a_1+a_2 \\ (a_1-a_2+a_3+a_4)\sqrt{\delta /2} \\ (a_1-a_2-a_3-a_4)\sqrt{\delta /2} \\ a_5+(a_3-a_4)\sqrt{\delta /2} \\ -a_5+(a_3-a_4)\sqrt{\delta /2} \end{pmatrix}. \end{aligned}$$
(C4)

Now comparing Eqs. (C3) and (C4), is possible to see that there is a greater variety of factors being multiplied to the quantum states coefficients. The first coefficient is multiplied by a factor of \(\sqrt{\delta }\), while the second and third coefficients are multiplied by \(\delta\). Different factors are multiplied to different parts of the fourth and fifth coefficients. All this imbalance leads to changes in the probabilities of finding a photon at the input of a subsequent directional coupler and this error propagation within the photonic circuit alters the final quantum state, moving it away from the ideal case and reducing the operation fidelity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, W.R. Errors and losses impact on planar integrated photonic circuits fidelity. Eur. Phys. J. Plus 139, 277 (2024). https://doi.org/10.1140/epjp/s13360-024-05070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05070-w

Navigation