Skip to main content
Log in

f(RT) gravity bouncing universe with cosmological parameters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The basic aim of this manuscript is to investigate the cosmological solutions in the context of the modified f(RT) theory of gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. For our current work, we consider the Friedmann–Robertson–Walker spacetime for finding the solutions of field equations. We investigate the nature of universe by considering acceleration expansion of universe, ultra-relativistic universe, sub-relativistic universe, dust universe, radiation universe, stiff universe. Moreover, we apply the power law technique by taking two different f(RT) gravity models to observe the expanding nature of the universe. The bouncing scenario is also discussed by choosing some particular values of the model parameters and observed the energy conditions, which are satisfied for a successful bouncing model. It is also concluded that some solutions in f(RT) theory of gravity supports the concept of exotic matter and accelerated expansion of the universe due to a large amount of negative pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. D. Wang, et al.: Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe. Eur. Phys. J. C 83.7, 1-14 (2023)

  2. E.V. Linder, Exploring the expansion history of the universe. Phys. Rev. Lett. 90.9, 091301 (2003)

  3. G.F.R. Ellis et al., The expansion of the universe. Mon. Not. R. Astronom. Soc. 184(3), 439–465 (1978)

    Article  ADS  Google Scholar 

  4. T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 66(2), 021301 (2002)

    Article  ADS  Google Scholar 

  5. C. Wetterich, Universe without expansion. Phys. Dark Univ. 2(4), 184–187 (2013)

    Article  Google Scholar 

  6. P. Astier, The expansion of the universe observed with supernovae. Rep. Progr. Phys. 75(11), 116901 (2012)

    Article  Google Scholar 

  7. M.S. Turner, The dark side of the universe: from Zwicky to accelerated expansion. Phys. Rep. 333, 619-635 (2000)

  8. S.D.P. Vitenti, M. Penna-Lima, A general reconstruction of the recent expansion history of the universe. J. Cosmol. Astropart. Phys. 2015(09), 045 (2015)

    Article  Google Scholar 

  9. R.G. Vishwakarma, Is the present expansion of the Universe really accelerating?. Mon. Not. R. Astronom. Soc. 345(2), 545–551 (2003)

    Article  ADS  Google Scholar 

  10. P. Astier, R. Pain, Observational evidence of the accelerated expansion of the universe. Comptes Rendus Physique 13(6–7), 521–538 (2012)

    Article  ADS  Google Scholar 

  11. W.L. Freedman, The Hubble constant and the expansion age of the Universe. Phys. Rep. 333, 13-31 (2000)

  12. S.A. Mardan et al., Spherically symmetric generating solutions in \(f(R)\) theory. Eur. Phys. J. Plus 138(9), 782 (2023)

    Article  Google Scholar 

  13. S.M. Farasat et al. Noncommutative wormhole solutions in modified \(f (R)\) theory of gravity. Chin. J. Phys. 73, 634-648 (2021)

  14. M.F. Shamir, Dynamics of anisotropic power-law \(f(R)\) cosmology. J. Exp. Theor. Phys. 123, 979–984 (2016)

    Article  ADS  Google Scholar 

  15. A. Malik, et al. Investigation of traversable wormhole solutions in modified \(f(R)\) gravity with scalar potential. Eur. Phys. J. C 83.6, 522 (2023)

  16. Z. Yousaf et al., Electromagnetic effects on anisotropic expansion-free fluid content. Commun. Theor. Phys. 75(10), 105202 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. Yousaf et al., Stability of Anisotropy Pressure in Self-Gravitational Systems in \(f (G)\) Gravity. Axioms 12(3), 257 (2023)

    Article  Google Scholar 

  18. A. Rashid, et al. A comprehensive study of Bardeen stars with conformal motion in \(f (G)\) gravity. Eur. Phys. J. C 83.11, 997 (2023)

  19. T. Naz, et al. Evolving embedded traversable wormholes in \(f (R, G)\) gravity: a comparative study. Phys. Dark Univ. 42, 101301 (2023)

  20. M.F. Shamir, S. Zia. Gravastars in \(f (R, G)\) gravity. Can. J. Phys. 98.9, 849-852 (2020)

  21. T. Naz, et al. Relativistic configurations of Tolman stellar spheres in \(f(G,T)\) gravity. Int. J. Geom. Methods Mod. Phys. 20.13, 2350222 (2023)

  22. P. Bhar, et al. Physical characteristics and maximum allowable mass of hybrid star in the context of \(f (Q)\) gravity. Eur. Phys. J. C 83.7, 646 (2023)

  23. M.F. Shamir, et al. Relativistic Krori-Barua Compact Stars in f (R, T) f(R,T) Gravity. Fortschritte der Physik 70.12, 2200134 (2022)

  24. Z. Asghar, et al. Study of embedded class-I fluid spheres in \(f (R, T)\) gravity with Karmarkar condition. Chin. J. Phys. 83, 427-437 (2023)

  25. M.F. Shamir, A. Malik. Behavior of anisotropic compact stars in \(f(R, \phi )\) gravity. Commun. Theor. Phys. 71.5, 599 (2019)

  26. Z. Asghar, et al. Comprehensive analysis of relativistic embedded class-I exponential compact spheres in \(f(R, \phi )\) gravity via Karmarkar condition. Commun. Theor. Phys. 75.10, 105401 (2023)

  27. M.F. Shamir, et al. Wormhole solutions in modified \(f(R, \phi , X)\) gravity. Int. J. Mod. Phys. A 36.04, 2150021 (2021)

  28. M.F. Shamir, et al. Dark universe with Noether symmetry. Theor. Math. Phys. 205.3, 1692-1705 (2020)

  29. M.F. Shamir, A. Malik, Investigating cosmology with equation of state. Can. J. Phys. 97.7, 752-760 (2019)

  30. A. Malik, M.F. Shamir, Dynamics of some cosmological solutions in modified \(f (R)\) gravity. New Astron. 82, 101460 (2021)

  31. Z. Yousaf et al., Bouncing cosmology with 4D-EGB gravity. Int. J. Theor. Phys. 62(7), 155 (2023)

    Article  MathSciNet  Google Scholar 

  32. T. Stachowiak, M. Szydlowski, Exact solutions in bouncing cosmology. Phys. Lett. B 646(5–6), 209–214 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Caruana, et al. Cosmological bouncing solutions in \(f (T, B)\) gravity. Eur. Phys. J. C 80.7, 640 (2020)

  34. H. Shabani, Z. Amir Hadi, Bouncing cosmological solutions from \(f (R, T)\) gravity. Eur. Phys. J. C 78, 1-24 (2018)

  35. M. Burkmar, M. Bruni, Bouncing cosmology from nonlinear dark energy with two cosmological constants. Phys. Rev. D 107(8), 083533 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  36. J.K. Singh et al., Bouncing cosmology in modified gravity with higher-order curvature terms. J. High Energy Phys. 2023(3), 1–21 (2023)

    Article  MathSciNet  Google Scholar 

  37. M. Zubair, F. Mushayydha, Bouncing behaviours in four dimensional Einstein Gauss-Bonnet gravity with cosmography and observational constraints. Eur. Phys. J. Plus 138.2, 173 (2023)

  38. Z. Yousaf et al., Non-singular bouncing model in energy momentum squared gravity. Physica Scripta 98(3), 035002 (2023)

    Article  ADS  Google Scholar 

  39. M.F. Shamir, Bouncing universe in \(f (G, T)\) gravity. Phys. Dark Univ. 32, 100794 (2021)

  40. S.D. Odintsov, T. Paul, A non-singular generalized entropy and its implications on bounce cosmology. Phys. Dark Univ. 39, 101159 (2023)

    Article  Google Scholar 

  41. A.S. Agrawal et al., Matter bounce scenario in extended symmetric teleparallel gravity. Eur. Phys. J. C 83(2), 113 (2023)

    Article  ADS  Google Scholar 

  42. V. Cardoso, et al. Energy extraction from bouncing geometries. Phys. Rev. D 108.2, 024071 (2023)

  43. J.K. Singh, B. Kazuharu, Bouncing universe in modified Gauss-Bonnet gravity. Chin. J. Phys. (2023)

  44. Y. Liu, et al. Exponential stability of Markovian jumping Cohen-Grossberg neural networks with mixed mode-dependent time-delays. Neurocomputing 177, 409-415 (2016)

  45. B. Du, L. Yurong, A.I. Atiatallah, Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks. J. Franklin Instit. 353.2, 448-461 (2016)

  46. E.I. Abouelmagd, et al. Reduction the secular solution to periodic solution in the generalized restricted three-body problem. Astrophys. Space Sci. 350, 495-505 (2014)

  47. T. Harko, et al. \(f (R, T)\) gravity. Phys. Rev. D 84, 024020 (2011)

  48. J. Barrientos, G.F. Rubilar, Comment on \(f (R, T)\) gravity. Phys. Rev. D 90(2), 028501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Adnan Malik acknowledges the Grant No. YS304023912 to support his Postdoctoral Fellowship at Zhejiang Normal University, China.

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors have same contributions to this paper.

Corresponding author

Correspondence to Tayyaba Naz.

Appendix A

Appendix A

$$ \begin{aligned}&\frac{1}{(1+\gamma )[3+\gamma (13+8\gamma )]}\Big [3\alpha \lambda +7\alpha \lambda \gamma +\frac{18(\dot{a}^2+a\ddot{a})}{a^{2}}+\frac{42\gamma (\dot{a}^2+a\ddot{a})}{a^{2}} -\alpha \lambda (3+7\gamma )(1\\&\quad +\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}+\frac{1}{\lambda a^{4}} 2(8\gamma ^{2}\dot{a}^{2}-(9+\gamma (21+8\gamma ))a\ddot{a})\Big [\lambda a^{2} +12n\alpha (\dot{a}^2+a\ddot{a})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})- (24n\alpha \lambda \dot{a}(3\\&\quad (1+\gamma )(3+4\gamma )a-8\gamma ^{2}\dot{a})(-\lambda ^{2} a^{4}+36(1+2n)\dot{a}^{4}+ 72(1+2n)a\dot{a}^{2}\ddot{a}+36(1+2n)a^{2}\ddot{a}^{2})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-n}(-2\\&\quad \dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a}))/(a(\lambda ^{2}a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2})^{2}) +\frac{1}{\lambda ^{5}\dot{a}^{2}}96na\gamma ^{2}(1+\frac{36(\ddot{a}+a\ddot{a})^{2}}{\lambda ^2a^{4}})^{-3-n}\Big (6\dot{a}^{2}(\dot{a}^{2}+a\ddot{a})\\&\quad (\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a}^{2})^{2})-2a\ddot{a}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a}^{2})^{2}) -4a\dot{a}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a}^{2})^{2}) (3\dot{a}\ddot{a}+aa^{3})-288\\&\quad (1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a}^{2}))(2\dot{a}^{3} +a\dot{a}\ddot{a}+a^{2}\dddot{a})^{2}+144(1+n)a(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})(3\dot{a}\ddot{a}\\&\quad +a\dddot{a})(2\dot{a}^{3} +a\dot{a}\ddot{a}+a^{2}\dddot{a})^{2}+5184(1+n)(2+n)(\dot{a}^{2}+a\ddot{a})^{3}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a})^{2} +a^{2}[\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a}^{2})^{2}(3\ddot{a}^{2}\\&\quad +4\dot{a}\ddot{a}+a\dddot{a})-72(1+n)(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4} +36\dot{a}^{4}+72\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2})[10\dot{a}^{2}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3}\ddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a} +a^{2}\dot{a}^{2} \\&\quad (-6\dot{a}^{2}+a\dddot{a})+a^{3}(\ddot{a}+a\dddot{a}^{2}+a\ddot{a}\dddot{a})]]\Big )\Big ]\Big ]=0, \end{aligned}$$
(A1)
$$ \begin{aligned}&\frac{1}{2\lambda ^{5}(1+\gamma )[3+\gamma (13+8\gamma )]\dot{a}^{2}}\gamma ((-1+\gamma )(\frac{1}{(-1+\gamma )\gamma }\lambda ^{4}a^{8} (2(2(-1+\gamma )\gamma \dot{a}^{2}-(9+\gamma (19+8\gamma ))a\ddot{a})(\lambda a^{2}\\&\quad +12n\alpha a^{2}(6(\dot{a}^{2}+a\ddot{a})+\alpha \lambda a^{2}(1-(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}))-(24\alpha \lambda ^{2}a^{3}\dot{a}(9(1+\gamma )^{2}a-2(-1+ \gamma )\gamma \dot{a})(-\lambda ^{2}a^{4}\\&\quad +36(1+2n)\dot{a}^{4}+72(1+2n)a\dot{a}^{2}\ddot{a}+36(1+2n)a^{2}\ddot{a}^{2})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n} (-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a}))/(\lambda ^{2}a^{4}\\&\quad +36\dot{a}^{4}+72a\dot{a}\ddot{a}+36a^{2}\ddot{a}^{2})^{2})+24n \alpha (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(6\dot{a}(\dot{a}^{2}+a\ddot{a})^{2})^{2}-2a\ddot{a}(\dot{a}^{2}+a\ddot{a}) (\lambda ^{2}a^{4}+36(\dot{a}^{2}\\&\quad +a\ddot{a})^{2})^{2}(3\dot{a}\ddot{a}+a\dddot{a})-288(1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2}) (2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+144(1+n)a(\dot{a}^{2}\\&\quad +a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})(3\dot{a}\ddot{a}+ a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+5184(1+n)(2+n)(\dot{a}^{2}+a\ddot{a})^{3}(-2\dot{a}^{3}-a\dot{a}\ddot{a}\\&\quad +a^{2}\dddot{a})^{2}+a^{2}(\lambda ^{2}a^{4}+36(\dot{a}+a\ddot{a})^{2})^{2}(3\ddot{a}+4\dot{a}\ddot{a}+a\ddot{a})-72(1+n)(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+ 36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a}+36a^{2}\\&\quad \ddot{a}^{2})(10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3}\dddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2}(-6\ddot{a}^{2}+a\dddot{a}) +a^{3}(\ddot{a}^{3}+a\dddot{a}^{2}+a\ddot{a}\dddot{a}))))+4\Big [72n\alpha \lambda ^{4}a^{8}\dot{a}^{2}\\&\quad (\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n} -24n\alpha \lambda ^{4}a\lambda ^{9}\ddot{a}(\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}+24\lambda ^{4}a^{8}(\dot{a}^{2}-a\ddot{a})\\&\quad (\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n})\lambda ^{4}\gamma a^{8}(6\lambda a^{2}(\dot{a}^{2}+a\ddot{a})^{2}-6\dot{a}(\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})\\&\quad (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n})+\alpha \lambda ^{2} a^{4}(1-(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n})-48n\alpha \lambda ^{4}a^{9}\dot{a}(\dot{a}^{2}+a\ddot{a})^{2} (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n})\\&\quad (3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^(3)-a\dot{a}\ddot{a}-a^{2}\dddot{a})+ 1728n(1+n)\alpha \lambda ^{2}a^{5}(\dot{a}^{2}+a\ddot{a})^{2}(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-2-n}(3\dot{a}\ddot{a}+a\dddot{a})\\&\quad (2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})-(12n\alpha \lambda ^{6}a^{11}\dot{a}(3(1+\gamma )a-2(1+3\gamma )\dot{a})(-\lambda a^{4}+36(1+2n)\dot{a}^{4}+72(1+2n)+2a\dot{a}^{2}\ddot{a}\\&\quad +36(1+2n)a^{2}\ddot{a}^{2})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n} (-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a}))/(\lambda ^{2}a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2})^{2}+62208n\\&\quad (1+n)(2+n)\alpha (\dot{a}^{2}+a\ddot{a})^{3}(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})(-2\dot{a}^{3}+a\dot{a}\ddot{a}-a^{2}\dddot{a})+12n\alpha \lambda ^{4}a^{10} (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}\\&\quad (3\ddot{a}^{2}+4\dot{a}\ddot{a}+a\dddot{a})-846n(1+n)\alpha \lambda ^{2}a^{4} (\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-2-n}(10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3} +2a^{3}\dot{a}\ddot{a}\dddot{a}\\&\quad +a\dddot{a}+a^{2}\dot{a}^{2}(-6\ddot{a}^{2}+a\ddddot{a})+a^{3}(\ddot{a}^{3}+a\dddot{a}+a\dot{a}\ddot{a}))+36n\alpha \gamma (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}}^{-3-n})\Big (6\dot{a}^{2}(36(\dot{a}^{2}+a\ddot{a})^{2})\\&\quad (\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2} -a\dot{a}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}(3\dot{a}\ddot{a}+a\ddot{a})-288(1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}[\lambda ^{2}a^{4}+ (36(\dot{a}^{2}\\&\quad +a\ddot{a})^{2})(2\dot{a}^{3}+a\dot{a}\ddot{a}-a^{2}\dddot{a})+144(1+n)a(\dot{a}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2}) (3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}+a\dot{a}\ddot{a}-a^{2}\dddot{a})\\&\quad +5184(1+n)(2+n)(\dot{a}^{2}+a\ddot{a})^{3}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a}) +[10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3}\dddot{a}+2a^{2}\dot{a}\ddot{a}\dddot{a}+a^{3}(\ddot{a}\\&\quad +a\dddot{a}^{2}+a\ddot{a}\ddddot{a})]]\Big )\Big ]=0. \end{aligned} $$
(A2)
$$ \begin{aligned}&\frac{1}{3\lambda ^{5}(1+\gamma )[3+\gamma (13+8\gamma )]a^{12}}(-\lambda ^{4}a^{8}(2(2(1-\gamma )\gamma \dot{a}^{2}-(9+\gamma (19+8\gamma ))a\ddot{a})(\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}\lambda (3+\gamma )(1+2\gamma )a^{2} (6(\dot{a}^{2}+a\ddot{a})+\alpha \lambda a^{2}(1-(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n})-(24n\alpha \lambda ^{2}a^{3}\dot{a}(9(1+\gamma )^{2}\\&\quad a-2(-1+\gamma )\gamma \dot{a}) (-\lambda ^{2}a^{4}+36(1+2n)a^{4}+72(1+2n)aa^{2}\ddot{a}^{2})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}(-2\dot{a}+a\dot{a}\ddot{a}+a^{2}\dddot{a})/\lambda ^{2}a^{4}\\&\quad +36\dot{a}^{4}+72a\dot{a}\ddot{a}+36a^{2}\ddot{a}^{2})^{2})+24n\alpha (1-\gamma )\gamma (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(6\dot{a}^{2}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4} +36(\dot{a}^{2}+a\ddot{a})^{2})^{2}\\&\quad -2a\ddot{a}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}-4a\dot{a}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2} (3\dot{a}\ddot{a}+a\dddot{a})-288(1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(\lambda ^{2}a^{4}\\&\quad +36(\dot{a}^{2}+a\ddot{a})^{2})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+144(1+n)a(\dot{a}^{2}+a\ddot{a}) (\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})+(3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})\\&\quad +5184(1+n)(2+n)(\dot{a}^{2}+a\ddot{a})^{3}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2} \dddot{a})^{2}+a^{2}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}(3\ddot{a}^{2}+4\dot{a}\ddot{a}+a\dddot{a})-72(1+n)\\&\quad (\dot{a}^{2}+a\ddot{a})\lambda ^{2}a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2} (10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3}\dddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2}(-6\ddot{a}^{2}+a\dddot{a})+a^{3}(\ddot{a}^{3}+a\dddot{a}\\&\quad +a\ddot{a}\dddot{a})))+ 6\gamma (72n\alpha \lambda ^{4}a^{8}\dot{a}^{2}(\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}+2\lambda ^{4}a^{8}(\dot{a}^{2}-a\ddot{a})\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}-\lambda ^{4}\gamma a^{8}(6\lambda a^{2}(\dot{a}^{2}+a\ddot{a})-6\dot{a}^{2}(\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}+\alpha \lambda ^{2}a^{4}(1-(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}))-48n\alpha \lambda ^{4} a^{9}\dot{a}(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}(36\dot{a}\ddot{a}+a\dddot{a})-3456n(1+n)a\lambda ^{2} a^{4}\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{2}(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+1728n(1+n) a\lambda ^{2}a^{5}(\dot{a}^{2}+a\ddot{a}) (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-2-n}(3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}\\&\quad -a^{2}\dddot{a})-(12n\alpha \lambda ^{6}a^{11}\dot{a}\Big (3(1+\gamma )a-2(1+3\gamma )\dot{a}\Big [-\lambda ^{2}a^{4}+36(1+2n)\dot{a}^{4} +72(1+2n)\dot{a}^{2}\ddot{a}+36(1+2n)a^{2}\dot{a}^{2}(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a}) /(\lambda ^{2}a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a} +36a^{2}\ddot{a})^{2}+62208n(1+n)(2+n)\alpha (\dot{a}^{2}+a\ddot{a})^{3}(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(-2\dot{a}^{3}+a\dot{a} \ddot{a}+a^{2}\dddot{a})+12n\alpha \lambda ^{4}a^{10} (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{1-n}(3\ddot{a}^{2}+4\dot{a}\dddot{a}+a\ddddot{a})-864n(1+n)\alpha \\&\quad \lambda ^{2}a^{4}(\dot{a}^{2} +a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-2-n} (10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}dot{a}^{3}\dddot{a}+2a^{2}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2}(-6\ddot{a}+a\ddddot{a})+a^{3}(\ddot{a}^{3}+ a\dddot{a}^{2}\\&\quad +a\ddot{a}\ddddot{a}))+36n\alpha \gamma (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(6\dot{a}^{2}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2} -2a\ddot{a}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}\\&\quad +a\ddot{a})^{2})^{2} -4a\dot{a}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}(3\dot{a}\ddot{a}+a\dddot{a})-288(1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(\lambda ^{2}a^{4}+36( \dot{a}^{2}+a\ddot{a})^{2})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})\\&\quad +144(1+n) a(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})(3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+5184(1+n)(2+n) (\dot{a}^{2}+a\ddot{a})^{2})\\&\quad (3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})^{2}(3\ddot{a}^{2}+4\dot{a}\dddot{a}+a\ddddot{a})-72(1+n) (\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36\dot{a}^{4} +72\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2})[10\dot{a}^{6}\\&\quad -6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}\dddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2} (-6\ddot{a}^{2}+a\ddddot{a})+a^{3}(\ddot{a}^{3}+a\dddot{a}^{2}+a\ddot{a}\dddot{a})]\Big ]\Big )=0. \end{aligned} $$
(A3)
$$ \begin{aligned}&\frac{1}{4\lambda ^{5}(1+\gamma )[3+\gamma (13+8\gamma )]a^{12}}(-\lambda ^{4}a^{8}(2(2(1-\gamma )\gamma \dot{a}^{2}-(9+\gamma (19+8\gamma ))a\ddot{a})(\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}\lambda (3+\gamma )(1+2\gamma )a^{2} (6(\dot{a}^{2}+a\ddot{a})+\alpha \lambda a^{2}(1-(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n})-(24n\alpha \lambda ^{2}a^{3}\dot{a}(9(1+\gamma )^{2}\\&\quad a-2(-1+\gamma )\gamma \dot{a}) (-\lambda ^{2}a^{4}+36(1+2n)a^{4}+72(1+2n)aa^{2}\ddot{a}^{2})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}(-2\dot{a}+a\dot{a}\ddot{a}+a^{2} \dddot{a})/\lambda ^{2}a^{4}\\&\quad +36\dot{a}^{4}+72a\dot{a}\ddot{a}+36a^{2}\ddot{a}^{2})^{2})+24n\alpha (1-\gamma )\gamma (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(6\dot{a}^{2} (\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4} +36(\dot{a}^{2}+a\ddot{a})^{2})^{2}\\&\quad -2a\ddot{a}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}-4a\dot{a}(\lambda ^{2}a^{4}+36 (\dot{a}^{2}+a\ddot{a})^{2})^{2} (3\dot{a}\ddot{a}+a\dddot{a})-288(1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(\lambda ^{2}a^{4}\\&\quad +36(\dot{a}^{2}+a\ddot{a})^{2})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2} \dddot{a})+144(1+n)a(\dot{a}^{2}+a\ddot{a}) (\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})+(3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})\\&\quad +5184(1+n)(2+n)(\dot{a}^{2} +a\ddot{a})^{3}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2} \dddot{a})^{2}+a^{2}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}(3\ddot{a}^{2}+4\dot{a}\ddot{a}+a\dddot{a})-72(1+n)\\&\quad (\dot{a}^{2}+a\ddot{a})\lambda ^{2} a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2} (10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3}\dddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2}(-6\ddot{a}^{2}+a\dddot{a})+a^{3}(\ddot{a}^{3} +a\dddot{a}\\&\quad +a\ddot{a}\dddot{a})))+ 6\gamma (72n\alpha \lambda ^{4}a^{8}\dot{a}^{2}(\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}+2\lambda ^{4}a^{8}(\dot{a}^{2} -a\ddot{a})\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}-\lambda ^{4}\gamma a^{8}(6\lambda a^{2}(\dot{a}^{2}+a\ddot{a})-6\dot{a}^{2}(\lambda a^{2}+12n\alpha (\dot{a}^{2}+a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}+\alpha \lambda ^{2}a^{4}(1-(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}))-48n\alpha \lambda ^{4} a^{9}\dot{a}(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n}(36\dot{a}\ddot{a}+a\dddot{a})-3456n(1+n)a\lambda ^{2} a^{4}\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{2}(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+1728n(1+n) a\lambda ^{2}a^{5}(\dot{a}^{2}+a\ddot{a}) (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-2-n}(3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}\\&\quad -a^{2}\dddot{a})-(12n\alpha \lambda ^{6} a^{11}\dot{a}\Big (3(1+\gamma )a-2(1+3\gamma )\dot{a}[-\lambda ^{2}a^{4}+36(1+2n)\dot{a}^{4} +72(1+2n)\dot{a}^{2}\ddot{a}+36(1+2n)a^{2}\dot{a}^{2}(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2} \dddot{a})/(\lambda ^{2}a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a} +36a^{2}\ddot{a})^{2}+62208n(1+n)(2+n)\alpha (\dot{a}^{2}+a\ddot{a})^{3}(1\\&\quad +\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(-2\dot{a}^{3} +a\dot{a}\ddot{a}+a^{2}\dddot{a})+12n\alpha \lambda ^{4}a^{10} (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{1-n}(3\ddot{a}^{2}+4\dot{a}\dddot{a}+a\ddddot{a})-864n(1+n)\alpha \\&\quad \lambda ^{2}a^{4}(\dot{a}^{2} +a\ddot{a})(1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-2-n} (10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}dot{a}^{3}\dddot{a}+2a^{2}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2}(-6\ddot{a}+a\ddddot{a})+a^{3}(\ddot{a}^{3} +a\dddot{a}^{2}\\&\quad +a\ddot{a}\ddddot{a}))+36n\alpha \gamma (1+\frac{36(\dot{a}^{2}+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-3-n}(6\dot{a}^{2}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}- 2a\ddot{a}(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}\\&\quad +a\ddot{a})^{2})^{2} -4a\dot{a}(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})^{2}(3\dot{a}\ddot{a}+a\dddot{a})-288(1+n)\dot{a}(\dot{a}^{2}+a\ddot{a})^{2}(\lambda ^{2}a^{4} +36(\dot{a}^{2}+a\ddot{a})^{2})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})\\&\quad +144(1+n) a(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36(\dot{a}^{2}+a\ddot{a})^{2})(3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})+5184(1+n)(2+n) (\dot{a}^{2}+a\ddot{a})^{2})\\&\quad (3\dot{a}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})^{2}(3\ddot{a}^{2}+4\dot{a}\dddot{a}+a\ddddot{a}) -72(1+n)(\dot{a}^{2}+a\ddot{a})(\lambda ^{2}a^{4}+36\dot{a}^{4} +72\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2})[10\dot{a}^{6}\\&\quad -6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}\dddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2} (-6\ddot{a}^{2}+a\ddddot{a})+a^{3}(\ddot{a}^{3}+a\dddot{a}^{2}+a\ddot{a}\dddot{a})]\} \Big )=0. \end{aligned} $$
(A4)
$$ \begin{aligned}&\frac{-1}{3+\gamma (13+8\gamma )}[3\alpha \lambda +\frac{18(\dot{a}^2+a\ddot{a})}{a^{2}} -\alpha \lambda (3+4\gamma )(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-n}-\frac{1}{\lambda a^{3}} (18\ddot{a}(\lambda a^{2} +12n\alpha (\dot{a}^2+a\ddot{a})\\&\quad (1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-1-n}))- 8\gamma (-\dot{a}^2-2a\ddot{a})(\lambda \alpha ^{2}+12n\alpha (\dot{a}^2+a\ddot{a})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2}a^{4}})^{-1-n})- (24n\alpha \lambda \dot{a}((9+6\gamma )a\\&\quad +4\gamma \dot{a}) (-\lambda ^{2} a^{4}+36(1+2n)\dot{a}^{4}++72(1+2n)a\dot{a}^{2}\ddot{a}+36(1+2n)a^{2}\ddot{a}^{2})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-n}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a}))/\\&\quad (a(\lambda ^{2}a^{4}+36\dot{a}^{4}+72a\dot{a}^{2}\ddot{a}+36a^{2}\ddot{a}^{2})^{2}) +\frac{1}{\lambda ^{5} a^{12}}(\alpha \lambda ^{6}a^{12}+6\lambda ^{5}a^{10}(\dot{a}^2+a\ddot{a})-72\alpha \lambda ^{4}a^{8}\dot{a}(\dot{a}^2+a\ddot{a})a(1\\&\quad +\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-1-n}+24n\alpha \lambda ^{4}a^{9}\ddot{a}(\dot{a}^2+a\ddot{a})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-1-n}+48n\alpha \lambda ^{4}a^{9}\dot{a}(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-1-n}(3\dot{a}^{3}\ddot{a}\\&\quad +a\dddot{a})+3456n(1+n)\alpha \lambda ^{2}a^{4}\dot{a}(\dot{a}^2+a\ddot{a})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-2-n}(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})-\Big (2\dot{a}^{3}-1728n(1+n)\alpha \lambda ^{2}a^{5}\\&\quad (\dot{a}^2+a\ddot{a})(1+\frac{36(\dot{a}^2+a\ddot{a} )^{2}}{\lambda ^{2} a^{4}})^{-2-n}(3\dot{a}^{3}\ddot{a}+a\dddot{a})(2\dot{a}^{3}-a\dot{a}\ddot{a}-a^{2}\dddot{a})-62280n(1+n)(2+n)\alpha [\dot{a}^2+a\ddot{a}(1\\&\quad +\frac{36(\dot{a}^2+ a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-3-n}(-2\dot{a}^{3}+a\dot{a}\ddot{a}+a^{2}\dddot{a})-12n\alpha \lambda ^{4}a^{10}(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-2-n}(3\ddot{a}^{2}+4\dot{a}\ddot{a}+a\dddot{a})+864n(1+n)\alpha \\&\quad \lambda ^{2}a^{4}(\dot{a}^2+a\ddot{a})(1+\frac{36(\dot{a}^2+a\ddot{a})^{2}}{\lambda ^{2} a^{4}})^{-2-n} [10\dot{a}^{6}-6a\dot{a}^{4}\ddot{a}-4a^{2}\dot{a}^{3}\dddot{a}+2a^{3}\dot{a}\ddot{a}\dddot{a}+a^{2}\dot{a}^{2}(-6\dot{a}^{2}+a\dddot{a})+a^{3} (\ddot{a}+a\dddot{a}^{2}\\&\quad +a\ddot{a}\dddot{a})]]\Big )=0, \end{aligned} $$
(A5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Naz, T., Rauf, A. et al. f(RT) gravity bouncing universe with cosmological parameters. Eur. Phys. J. Plus 139, 276 (2024). https://doi.org/10.1140/epjp/s13360-024-05006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05006-4

Navigation