Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 20, 2024

Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell

  • Julius Kim Tiongson and Imee Su Martinez EMAIL logo

Abstract

The surface tension of ionic liquids with the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were measured using a home-built surface tensiometer. A high-vacuum line was used to pre-evacuate the ionic liquids prior to analyses, ensuring that the samples were free of dissolved gases, water, and volatile impurities. Using the pendant drop method, measurements were performed in a custom-built surface tension vacuum or gas cell, in the presence of nitrogen and carbon dioxide gas. To calibrate the instrument, surface tension measurement of known liquids was also performed. Results show that the presence of saturated carbon dioxide led to the lowering of measured surface tension values, indicating the adsorption of CO2 on the ionic liquid surface.


Corresponding author: Imee Su Martinez, Institute of Chemistry, National Science Complex, University of the Philippines, Diliman, Quezon City, 2100, Philippines; and Natural Science Research Institute, University of the Philippines, Diliman, Quezon City, 2100, Philippines, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).
  1. Research funding: Acknowledging funding support provided by the DOST-PCIEERD, DOST-NRCP, and the NSRI (CHE-20-1-04). The group is grateful to the contribution of Mr. Joshua Ambong for fitting the BMIMBF4 drops.

References

[1] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang. Chem. Rev. 117, 9625–9673 (2017), https://doi.org/10.1021/acs.chemrev.7b00072.Search in Google Scholar PubMed

[2] E. N. Kusumawati, M. Shirai. Curr. Opin. Green Sustain. 35, 1–5 (2022).10.1016/j.cogsc.2022.100613Search in Google Scholar

[3] Y. Zheng, D. Wang, S. Kaushik, S. Zhang, T. Wada, J. Hwang, K. Matsumoto, R. Hagiwara. Energy Chem. 4, 100075 (2022), https://doi.org/10.1016/j.enchem.2022.100075.Search in Google Scholar

[4] Z. Lei, B. Chen, Y.-M. Koo, D. R. MacFarlane. Chem. Rev. 117, 6633–7240 (2017), https://doi.org/10.1021/acs.chemrev.7b00246.Search in Google Scholar PubMed

[5] N. V. Plechkova, K. R. Seddon. Ionic liquids:“designer” solvents for green chemistry. In Methods and Reagents for Green Chemistry, P. Tundo, A. Perosa, F. Zecchini (Eds.), pp. 103–130, John Wiley & Sons, Inc., Hoboken, NJ, USA (2007).10.1002/9780470124086.ch5Search in Google Scholar

[6] R. Giernoth. Angew. Chem. 14, 2834–2839 (2010), https://doi.org/10.1002/anie.200905981.Search in Google Scholar PubMed

[7] J. K. A. Tiongson, D. A. V. Bruzon, G. A. Tapang, I. S. Martinez. J. Chem. Eng. Data 63, 1135–1145 (2018), https://doi.org/10.1021/acs.jced.7b00281.Search in Google Scholar

[8] J. Wang, Y. Li, H. Liu, J. Tong. J. Mol. Liq. 351, 1–8 (2022), https://doi.org/10.1016/j.molliq.2022.118621.Search in Google Scholar

[9] S. B. Wachsmann, J. Bauhof, A. R. Raab, A. Zens, T. Sottmann, S. Laschat. Soft Matt. 18, 7773–7778 (2022), https://doi.org/10.1039/d2sm00854h.Search in Google Scholar PubMed

[10] J. Ávila, D. Lozano-Martín, M. S. Santos, Y. Zhang, H. Li, A. Pádua, R. Atkin, M. C. Gomes. Phys. Chem. Chem. Phys. 25, 6808–6816 (2023), https://doi.org/10.1039/d2cp05145a.Search in Google Scholar PubMed

[11] A. Adamson. Physical Chemistry of Surfaces, John Wiley and Sons, Toronto, 3rd ed. (1976).Search in Google Scholar

[12] P. Chen, D. Y. Kwok, R. M. Prokop, O. I. del Rio, S. S. Susnar, A. W. Neumann. Axisymmetric drop shape analysis (ADSA) and its applications. In Drops and Bubbles in Interfacial Research, D. Mobius, R. Miller (Eds.), Elsevier Science B.V., Amsterdam (1998).10.1016/S1383-7303(98)80019-7Search in Google Scholar

[13] A. S. Bateni, S. S. Susnar, A. Amirfazli, A. W. Neumann. Langmuir 20, 7589–7597 (2004), https://doi.org/10.1021/la0494167.Search in Google Scholar PubMed

[14] C. E. Stauffer. J. Phys. Chem. 69, 1933–1938 (1965), https://doi.org/10.1021/j100890a024.Search in Google Scholar

[15] R. Sedev. Curr. Opin. Colloid Interface Sci. 16, 310–316 (2011), https://doi.org/10.1016/j.cocis.2011.01.011.Search in Google Scholar

[16] S. Sugden. J. Chem. Soc. Trans. 125, 1177–1189 (1924), https://doi.org/10.1039/ct9242501177.Search in Google Scholar

[17] A. M. Log, V. Diky, M. L. Huber. Int. J. Thermophys. 44(7), 110 (2023). https://doi.org/10.1007/s10765-023-03216-z.Search in Google Scholar PubMed PubMed Central

[18] C. Santos, S. Baldelli. J. Phys. Chem. B 113, 923–933 (2009), https://doi.org/10.1021/jp807924g.Search in Google Scholar PubMed

[19] V. Lockett, R. Sedev, C. Bassell, J. Ralston. Phys. Chem. Chem. Phys. 10, 1330–1335 (2008), https://doi.org/10.1039/b713584j.Search in Google Scholar PubMed

[20] I. S. Martinez, S. Baldelli. J. Phys. Chem. C 114, 11564–11575 (2010), https://doi.org/10.1021/jp1039095.Search in Google Scholar

[21] J. Restolho, A. P. Serro, J. L. Mata, B. Saramago. J. Chem. Eng. Data 54, 950–955 (2009), https://doi.org/10.1021/je800727f.Search in Google Scholar

[22] Z. Zhai, U. Paap, A. Gezmis, F. Maier, H.-P. Steinrück, T. M. Koller. J. Mol. Liq. 386, 1–9 (2023), https://doi.org/10.1016/j.molliq.2023.122388.Search in Google Scholar

[23] K. R. Seddon, A. Stark, M.-J. Torres. Pure Appl. Chem. 72, 2275–2287 (2000), https://doi.org/10.1351/pac200072122275.Search in Google Scholar

[24] J. Gaydos. The Laplace Equation of Capillarity, Drops and Bubbles in Interfacial Research, pp. 1–61, Elsevier Science B.V., Amsterdam (1998).10.1016/S1383-7303(98)80018-5Search in Google Scholar

[25] F. Bashforth, J. C. Adams. An Attempt to Test the Theory of capillary Action, Cambridge University Press and Deighton Bel Co., Cambridge (1892).Search in Google Scholar

[26] D. A. V. Bruzon, G. A. tapang, I. S. Martinez. Rev. Sci. Instrum. 92, 024102 (2021), https://doi.org/10.1063/5.0019479.Search in Google Scholar PubMed

[27] I. S. Martinez, S. Baldelli. Rev. Sci. Instrum. 81, 044101 (2010), https://doi.org/10.1063/1.3267191.Search in Google Scholar PubMed

[28] C. A. Schneider, W. S. Rasband, K. W. Eliceiri. Nat. Methods 9, 671–675 (2012), https://doi.org/10.1038/nmeth.2089.Search in Google Scholar PubMed PubMed Central

[29] Tomas Co. RK4 3.0. in RK4 is an Excel® Add-in to Produce a Spreadsheet That Implements a 4th Order Runge-Kutta Method for the Solution of Small to Medium-Size Initial Value Simulation Studies, Michigan Technological University, Houghton (2006), It is compatible with Excel® 97 to Excel® 2003.Search in Google Scholar

[30] G. V. S. M. Carrera, C. A. M. Afonso, L. C. Branco. J. Chem. Eng. Data 55, 609–615 (2010), https://doi.org/10.1021/je900502s.Search in Google Scholar

[31] M. G. Freire, P. J. Carvalho, A. M. Fernandes, I. M. Marrucho, A. J. Queimada, J. A. P. J. Coutinho. Int. Sci. 314, 621–630 (2007), https://doi.org/10.1016/j.jcis.2007.06.003.Search in Google Scholar PubMed

[32] N. Kabudi, A. Shayanfar, W. E. Acree, A. Jouyban. Liquids 2, 378–387 (2022), https://doi.org/10.3390/liquids2040021.Search in Google Scholar

[33] R. Tahery, S. Khoshary. J. Mol. Liq. 247, 354–365 (2017), https://doi.org/10.1016/j.molliq.2017.10.032.Search in Google Scholar

[34] M. Pagliaro, M. Rossi. The Future of Glycerol: New Usage for a Versatile Raw Material, p. 2, RSC Publishing, Cambridge, UK (2008).Search in Google Scholar

[35] A. E. V. G. JonathanHuddleston, W. Matthew Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers. Green Chem. 3, 9 (2001).10.1039/b103275pSearch in Google Scholar

[36] H. Kahl, W. Tino, J. Winkelmann. J. Chem. Eng. Data 48, 1500–1507 (2003), https://doi.org/10.1021/je034062r.Search in Google Scholar

[37] C. Kolbeck, J. Lehmann, K. R. J. Lovelock, T. Cremer, N. Paape, P. Wasserscheid, A. P. Fröba, F. Maier, H.-P. Steinrück. J. Phys. Chem. B 114, 17025–17036 (2010), https://doi.org/10.1021/jp1068413.Search in Google Scholar PubMed

[38] M. Mezger, B. M. Ocko, H. Reichert, M. Deutsch. Proc. Natl. Acad. Sci. U.S.A. 110, 3733–3737 (2013), https://doi.org/10.1073/pnas.1211749110.Search in Google Scholar PubMed PubMed Central

[39] S. Rivera-Rubero, S. Baldelli. J. Phys. Chem. B 110, 4756–4765 (2006), https://doi.org/10.1021/jp0563989.Search in Google Scholar PubMed

[40] C. G. Eisenhardt, M. Pasquini, G. Pietraperzia, M. Becucci. Phys. Chem. Chem. Phys. 4, 5590–5593 (2002), https://doi.org/10.1039/b207432j.Search in Google Scholar

[41] D. A. Bruzon, J. K. Tiongson, G. A. Tapang, I. S. Martinez. J. Appl. Electrochem. 47, 1251–1260 (2017), https://doi.org/10.1007/s10800-017-1117-7.Search in Google Scholar

[42] T. Soori, S. M. Rassoulinejad-Mousavi, L. Zhang, A. Rokoni, Y. Ying Sun. Fluid Phase Equil. 538, 1–12 (2021), https://doi.org/10.1016/j.fluid.2021.113012.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2023-1113).


Published Online: 2024-03-20

© 2024 IUPAC & De Gruyter

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2023-1113/html
Scroll to top button