Skip to main content

Advertisement

Log in

Analysis of spatio-temporal variability of groundwater storage in Ethiopia using Gravity Recovery and Climate Experiment (GRACE) data

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The spatio-temporal variability of groundwater storage cannot be well understood without proper groundwater monitoring schemes. Since 2002, the launch of the Gravity Recovery and Climate Experiment Satellite (GRACE) mission has served to monitor Groundwater Storage Anomaly (GWSA) and filled the observational data gap on a regional scale. This study aimed to estimate the spatio-temporal GWSA in Ethiopia using GRACE satellite data. GWSA was calculated by disaggregating GRACE estimation of Terrestrial Water Storage Anomaly (TWSA) using auxiliary soil moisture and surface runoff data obtained from the Global Land Data Assimilation System. GWSA was decomposed using the Seasonal-Trend decomposition method, LOESS (STL). The results depicted an increasing variability of TWSA and GWSA over various regions of the country. Ethiopia experienced an increase in TWSA (3.8 mm yr−1) and GWSA (4.6 mm yr−1) between the years 2003 and 2021, with GWSA contributing primarily to the TWSA. Greater contributions to the rise in groundwater storage come from the Rift Valley, Omo Gibe, Baro Akobo, and a portion of the Genale Dawa, Awash, and Wabi Shebelle Basins. Except for the lowlands (Northwestern, Northeastern and Southeastern), most regions showed an average increase in GWSA per annum at varying rates. Precipitation, temperature, and evapotranspiration have a significant influence on the spatial variability of GWSA. The impact of precipitation on GWSA reached its maximum after a 2-month lag (correlation coefficient (R) = 0.62). GRACE captured the seasonal GWSA of Ethiopia reasonably well and can be used as a guide for a more detailed evaluation of the groundwater potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Abiye T (2006) Groundwater occurrence in Ethiopia. Addis Ababa University Press, Addis Ababa, p 105

    Google Scholar 

  • Abou Zaki N, TorabiHaghighi A, Rossi PM, Tourian MJ, Kløve B (2019) Monitoring groundwater storage depletion using gravity recovery and climate experiment (GRACE) data in Bakhtegan Catchment, Iran. Water 11(7):1456. https://doi.org/10.3390/w11071456

    Article  Google Scholar 

  • Ali S, Liu D, Fu Q, Cheema MJM, Pham QB, Rahaman MM, Dang TD, Anh DT (2021) Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment. Remote Sens. https://doi.org/10.3390/rs13173513

    Article  Google Scholar 

  • Ali S, Wang Q, Liu D, Fu Q, Rahaman MM, Faiz MA, Cheema MJM (2022a) Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. J Hydrol 605:127315. https://doi.org/10.1016/j.jhydrol.2021.127315

    Article  Google Scholar 

  • Ali S, Liu D, Fu Q, Cheema MJM, Pal SC, Arshad A, Pham QB, Zhang L (2022b) Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. J Hydrol. https://doi.org/10.1016/j.jhydrol.2022.128295

    Article  Google Scholar 

  • Anteneh ZS, Awoke BG, Reda TM et al (2022) Groundwater potential mapping using integrations of remote sensing and analytical hierarchy process methods in Ataye-watershed, Middle Awash Basin, Ethiopia. Sustain Water Resour Manag 8:183. https://doi.org/10.1007/s40899-022-00772-4

    Article  Google Scholar 

  • Awange JL, Gebremichael M, Forootan E, Wakbulcho G, Anyah R, Ferreira VG, Alemayehu T (2014) Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Adv Water Resour 74:64–78. https://doi.org/10.1016/j.advwatres.2014.07.012

    Article  Google Scholar 

  • Awulachew SB, Yilma AD, Loulseged M, Loiskandl W, Ayana M, Alamirew T (2007) Water resources and irrigation development in Ethiopia. International Water Management Institute, Colombo, p 78. https://doi.org/10.3910/2009.305

    Book  Google Scholar 

  • Ayehu GT, Tadesse T, Gessesse B, Dinku T (2018) Validation of new satellite precipitation products over the Upper Blue Nile Basin, Ethiopia. Atmos Meas Tech 11(4):1921–1936

    Article  Google Scholar 

  • Ayele S, Workneh ZG, Meshesha BT (2023) Water challenges of Dire Dawa City of Ethiopia: an assessment of analysis of urban growth and groundwater supply. Environ Chall 12:100738

    Article  Google Scholar 

  • Ayenew T, Demlie M, Wohnlich S (2008) Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J Afr Earth Sci 52(3):97–113. https://doi.org/10.1016/j.jafrearsci.2008.06.006

    Article  CAS  Google Scholar 

  • Bai P, Liu X, Yang T, Liang K, Liu C (2016) Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. J Geophys Res Atmos. https://doi.org/10.1002/2016JD025501

    Article  Google Scholar 

  • Bashe B (2017) Groundwater potential mapping using remote sensing and GIS in Rift Valley Lakes Basin, Weito Sub Basin, Ethiopia. Int J Sci Eng Res 8(2):43–50

    Google Scholar 

  • Bayissa YA, Moges SA, Xuan Y, Van Andel SJ, Maskey S, Solomatine DP, Griensven AV, Tadesse T (2015) Spatio-temporal assessment of meteorological drought under the influence of varying record length: the case of Upper Blue Nile Basin, Ethiopia. Hydrol Sci J 60(11):1927–1942

    Google Scholar 

  • Berhanu B, Melesse AM, Seleshi Y (2013) GIS-based hydrological zones and soil geo-database of Ethiopia. CATENA 104:21–31

    Article  Google Scholar 

  • Berhanu B, Seleshi Y, Melesse AM (2014) Surface water and groundwater resources of Ethiopia: potentials and challenges of water resources development. Nile river basin. Springer, Cham, pp 97–117

    Chapter  Google Scholar 

  • Beyene TK, Agarwal A, Jain MK, Yadav BK (2023) Investigation of the propagation of meteorological to hydrological drought and water required to recover from drought over Ethiopian basins. J Water Clim Change 14(9):2988–3009

    Article  Google Scholar 

  • Birhanu B, Kebede S, Charles K, Taye M, Atlaw A, Birhane M (2021) Impact of natural and anthropogenic stresses on surface and groundwater supply sources of the upper Awash sub-basin, central Ethiopia. Front Earth Sci 9:656726. https://doi.org/10.3389/feart.2021.656726

    Article  Google Scholar 

  • Bonsor HC, Mansour MM, MacDonald AM, Hughes AG, Hipkin RG, Bedada T (2010) Interpretation of GRACE data of the Nile Basin using a groundwater recharge model. Hydrol Earth Syst Sci 7:4501–4533

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Ries JC (2004) Low degree gravitational changes from GRACE: validation and interpretation. Geophys Res Lett. https://doi.org/10.1029/2004GL021670

    Article  Google Scholar 

  • Chen J, Famigliett JS, Scanlon BR, Rodell M (2016) Groundwater storage changes: present status from GRACE observations. Remote sensing and water resources. Springer, Cham, pp 207–227

    Chapter  Google Scholar 

  • Chen J, Cazenave A, Dahle C, Llovel W, Panet I, Pfeffer J, Moreira L (2022) Applications and challenges of GRACE and GRACE follow-on satellite gravimetry. Surv Geophy 43:1–41

    Article  Google Scholar 

  • Cherinet A, Tadesse C, Abebe T (2022) Drought and flood extreme events and management strategies in Ethiopia. J Geogr Nat Disast 12:248

    Google Scholar 

  • Demlie M, Wohnlich S, Wisotzky F, Gizaw B (2007) Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia. Hydrogeol J 15(6):1169–1181

    Article  CAS  Google Scholar 

  • Eicker A, Mayer-Gürr T, Kurtenbach E (2012) Challenges in deriving trends from GRACE. In: Geodesy for planet earth: proceedings of the 2009 IAG symposium, Buenos Aires, Argentina, 31 August 31–4, September 2009. Springer, Berlin, pp 153–160

  • Endalew GJ (2007) Changes in the frequency and intensity of extremes over Northeast Africa (no. 26). KNMI, p 46

  • Eshetu Z, Simane B, Tebeje G, Negatu W, Amsalu A, Berhanu A, Bird N, Welham B, Trujillo NC (2014) Climate finance in Ethiopia. Overseas Development Institute, London and Climate Science Centre, Addis Ababa

    Google Scholar 

  • Fenta AA, Kifle A, Gebreyohannes T et al (2015) Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeol J 23:195–206. https://doi.org/10.1007/s10040-014-1198-x

    Article  Google Scholar 

  • Frappart F, Ramillien G (2018) Monitoring groundwater storage changes using the gravity recovery and climate experiment (GRACE) satellite mission: a review. Remote Sens 10:829. https://doi.org/10.3390/rs10060829

    Article  Google Scholar 

  • Gebrehiwot T, Van der Veen A, Maathuis B (2011) Spatial and temporal assessment of drought in the northern highlands of Ethiopia. Int J Appl Earth Obs Geoinf 13(3):309–321

    Google Scholar 

  • Gruber A, Levizzani V (2008) Assessment of global precipitation products: a project of the world climate research programme global energy and water cycle experiment (GEWEX) radiation panel. WMO/TD 1430, p 50

  • Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated gravity recovery and climate experiment (GRACE) terrestrial water storage observations. Water Resour Res 48:W07525. https://doi.org/10.1029/WR011291

    Article  Google Scholar 

  • Huang Z, Pan Y, Gong H, Yeh PJ-F, Li X, Zhou D, Zhao W (2015) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys Res Lett 42:1791–1799. https://doi.org/10.1002/2014GL062498

    Article  Google Scholar 

  • Kazmin V (1975) Explanation of the geological map of Ethiopia Bull No. 1 Eigs Addis Ababa

  • Kebede S (2013) Groundwater in Ethiopia: features, numbers and opportunities. Springer, Berlin

    Book  Google Scholar 

  • Kebede S, Hailu A, Crane E, Dochartaigh Ó, Bellwood-Howard BÉ (2018) Africa groundwater atlas: hydrogeology of Ethiopia. British Geological Survey. http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Ethiopia

  • Kendall M (1975) Rank correlation measures, vol 202. Charles Griffin, London, p 15

    Google Scholar 

  • Kenea TT, Kusche J, Kebede S, Güntner A (2020) Forecasting terrestrial water storage for drought management in Ethiopia. Hydrol Sci J 65(13):2210–2223. https://doi.org/10.1080/02626667.2020.1790564

    Article  Google Scholar 

  • Khorrami B, Ali S, Gündüz O (2023) Investigating the local-scale fluctuations of groundwater storage by using downscaled GRACE/GRACE-FO JPL mascon product based on machine learning (ML) algorithm. Water Resour Manag 37:1–18

    Article  Google Scholar 

  • Kisi O, Ay M (2014) Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J Hydrol 513(26):362–375. https://doi.org/10.1016/j.jhydrol.2014.03

    Article  CAS  Google Scholar 

  • Kiss A, Földváry L (2017) Uncertainty of GRACE-borne long periodic and secular ice mass variations in Antarctica. Acta Geod Geophys 52(4):497–510

    Article  Google Scholar 

  • Lemma E, Upadhyaya S, Ramsankaran RAAJ (2019) Investigating the performance of satellite and reanalysis precipitation products at monthly timescales across different precipitation regimes of Ethiopia. Int J Remote Sens 40(10):4019–4042. https://doi.org/10.1080/01431161.2018.1558373

    Article  Google Scholar 

  • Li B, Rodell M (2021) Groundwater drought: environmental controls and monitoring. Global groundwater. Elsevier, Amsterdam, pp 145–162

    Chapter  Google Scholar 

  • Li Q, Pan Y, Zhang C, Gong H (2023) Quantifying multi-source uncertainties in GRACE-based estimates of groundwater storage changes in Mainland China. Remote Sens 15(11):2744

    Article  Google Scholar 

  • Long D, Longuevergne L, Scanlon BR (2015) Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour Res 51:2574–2594. https://doi.org/10.1002/2014WR016853

    Article  Google Scholar 

  • Longuevergne L, Wilson CR, Scanlon BR, Crétaux JF (2013) GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrol Earth Syst Sci 17:4817–4830. https://doi.org/10.5194/hess-17-4817-2013

    Article  Google Scholar 

  • Macdonald AM, Bonsor HC, Dochartaigh BÉÓ, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7:024009. https://doi.org/10.1088/1748-9326/7/2/024009

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc 13:245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • McSweeney C, New M, Lizcano G (2024) UNDP climate change country profiles: Ethiopia. https://digital.library.unt.edu/ark:/67531/metadc226682/m2/1/high_res_d/Ethiopia.hires.report.pdf

  • McSweeney C, New M, Lizcano G (2008) UNDP climate change country profiles: Ethiopia. http://ncsp.undp.org/sites/default/files/Ethiopia.oxford.report.pdf

  • Melesse A, Abtew W, Dessalegne T, Wang X (2010) Low and high flow analyses and wavelet application for characterization of the Blue Nile River system. Hydrol Process Int J 24(3):241–252

    Article  Google Scholar 

  • Mengistu HA, Demlie MB, Abiye TA (2019) Groundwater resource potential and status of groundwater resource development in Ethiopia. Hydrogeol J 27(3):1051–1065. https://doi.org/10.1007/s10040-019-01928-x

    Article  Google Scholar 

  • Mera GA (2018) Drought and its impacts in Ethiopia. Weather Clim Extrem 22:24–35. https://doi.org/10.1016/J.WACE.2018.10.002

    Article  Google Scholar 

  • Ministry of Foreign Affairs (2018) Climate change profile, Ethiopia

  • Ministry of Water and Energy (2013) Supplement to task force report on aquifer management for Addis Ababa and vicinity. Updated version. Strategic framework for managed groundwater development (SFMGD) task force. http://metameta.nl/wp-content/uploads/2013/03/Task_Force_Report_Supplement.pdf

  • Ministry of Water Resources (2002) Water sector development program (WSDP), Addis Ababa: Ethiopia

  • Miro ME, Famiglietti JS (2018) Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California’s Central Valley. Remote Sens 10(1):143. https://doi.org/10.3390/rs10010143

    Article  Google Scholar 

  • Mistry G, Stephen H, Ahmad S (2019) American society of civil engineers world environmental and water resources congress—Pittsburgh, Pennsylvania (May 19–23, 2019). In: World environmental and water resources congress 2019—emerging and innovative technologies, pp 104–117. https://doi.org/10.1061/9780784482322.011

  • MoA (Ministry of Agriculture) Natural Resources Management Directorates (2011) Small-scale irrigation situation analysis and capacity needs assessment, Addis Ababa, Ethiopia

  • Moges S (2012) Agricultural use of ground water in Ethiopia: assessment of potential and analysis of economics, policies, constraints and opportunities. Gates Open Research

  • Mohr P (1983) Perspectives on the Ethiopian volcanic province. Bull Volcanol 46–1:2343

    Google Scholar 

  • Negesse A (2021) Impacts of land use and land cover change on soil erosion and hydrological response in Ethiopia. Appl Environ Soil Sci. https://doi.org/10.1155/2021/6669438

    Article  Google Scholar 

  • Nigatu ZM, Fan D, You W, Melesse AM (2021) Hydroclimatic extremes evaluation using GRACE/GRACE-FO and multidecadal climatic variables over the Nile river basin. Remote Sens 13(4):651. https://doi.org/10.3390/rs13040651

    Article  Google Scholar 

  • Nkunzimana A, Bi S, Alriah MAA, Zhi T, Kur NAD (2020) Comparative analysis of the performance of satellite-based precipitation products over various topographical unities in central East Africa: case of Burundi. Earth Space Sci 7(5):e2019EA000834

    Article  Google Scholar 

  • NMA (1996) Climatic and agroclimatic resources of Ethiopia. National meteorological services agency of Ethiopia. Meteorol Res Rep Ser 1:1–137

    Google Scholar 

  • Pascal C, Ferrant S, Selles A, Maréchal JC, Paswan A, Merlin O (2022) Evaluating downscaling methods of GRACE (gravity recovery and climate experiment) data: a case study over a fractured crystalline aquifer in southern India. Hydrol Earth Syst Sci 26(15):4169–4186

    Article  Google Scholar 

  • Pavelic P, Giordano M, Keraita B, Ramesh V, Rao T (2012) Groundwater availability and use in sub-Saharan Africa: a review of 15 countries. International Water Management Institute (IWMI), Colombo, p 274. https://doi.org/10.5337/2012.213

    Book  Google Scholar 

  • Philip S, Kew SF, Jan van Oldenborgh G, Otto F, O’Keefe S, Haustein K et al (2018) Attribution analysis of the Ethiopian drought of 2015. J Clim 31(6):2465–2486

    Article  Google Scholar 

  • Rateb A, Scanlon BR, Pool DR, Sun A, Zhang Z, Chen J, Clark B, Faunt CC, Haugh CJ, Hill M, Hobza C, McGuire VL, Reitz M, Mueller Schmied H, Sutanudjaja EH, Swenson S, Wiese D, Xia Y, Zell W (2020) Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major US aquifers. Water Resour Res 56(12):e2020WR027556. https://doi.org/10.1029/2020WR027556

    Article  Google Scholar 

  • Regasa MS, Nones M, Adeba D (2021) A review on land use and land cover change in Ethiopian Basins. Land 10:585. https://doi.org/10.3390/land10060585

    Article  Google Scholar 

  • Robinson S, Strzepek K, Cervigni R (2013) The cost of adapting to climate change in Ethiopia: sector-wise and macro-economic estimates. IFPRI, ESSP working paper 53. http://www.ifpri.org/sites/default/files/publications/esspwp53.pdf

  • Rodell M, Chao BF, Au AY, Kimball J, McDonald K (2005) Global biomass variation and its geodynamic effects, 1982–1998. Earth Interact 9:1–19. https://doi.org/10.1175/EI126.1

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating GW storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15(1):159–166. https://doi.org/10.1007/s10040-006-0103-7

    Article  CAS  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. https://doi.org/10.1038/nature08238

    Article  CAS  Google Scholar 

  • Salam M, Cheema MJM, Zhang W, Hussain S, Khan A, Bilal M, Arshad A, Ali S, Zaman MA (2020) Groundwater storage change estimation using grace satellite data in Indus Basin. Big Data Water Resour Eng 1:13–18. https://doi.org/10.26480/bdwre.01.2020.10.15

    Article  Google Scholar 

  • Save H, Bettadpur S, Tapley BD (2015) Evaluation of global equal-area mass grid solutions from GRACE, paper presented at European Geosciences Union General Assembly, Vienna

  • Save H, Bettadpur S, Tapley BD (2016) High-resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121(10):7547–7569

    Article  Google Scholar 

  • Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:W04520. https://doi.org/10.1029/2011WR011312

    Article  Google Scholar 

  • Scanlon BR, Zhang Z, Reedy RC, Pool DR, Save H, Long D, Chen J, Wolock DM, Conway BD, Winester D (2015) Hydrologic implications of GRACE satellite data in the Colorado River Basin, Water Resour. Res 51:9891–9903. https://doi.org/10.1002/2015WR018090

    Article  Google Scholar 

  • Scanlon BR, Rateb A, Anyamba A, Kebede S, MacDonald AM, Shamsudduha M, Small J, Sun A, Taylor RG, Xie H (2022) Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ Res Lett 17:014046. https://doi.org/10.1088/1748-9326/ac3bfc

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Shamsudduha M, Taylor RG (2020) Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst Dyn 11(3):755–774. https://doi.org/10.5194/esd-11-755-2020

    Article  Google Scholar 

  • Shiferaw M, Nones M, Adeba DA (2021) A review on land use land cover change in Ethiopian basins. Land 10:585. https://doi.org/10.3390/land100060585

    Article  Google Scholar 

  • Shishaye HA, Tait DR, Befus KM, Maher DT, Reading MJ, Luke J, Tewolde TG, Asfaw AT (2020) Development of an improved hydrogeological and hydro-geochemical conceptualization of a complex aquifer system in Ethiopia. Hydrogeol J 28(8):2727–2746

    Article  CAS  Google Scholar 

  • Sisay BM, Nedaw D, Birhanu B, Gigar AG (2023) Application of SWAT and MODFLOW models for characterization of surface–groundwater interaction in the Modjo River catchment, central Ethiopia. Environ Earth Sci 82:341. https://doi.org/10.1007/s12665-023-10988-y

    Article  CAS  Google Scholar 

  • Skaskevych A (2014) A comparison study of grace-based groundwater modeling for data-rich and data-poor regions. University of Missouri-Kansas City. https://hdl.handle.net/10355/43918

  • Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the high plains aquifer, central United States. Water Resour Res 45:W05410. https://doi.org/10.1029/2008WR006892

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. J Geophys Res Solid Earth 107(B9):ETG-3

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett. https://doi.org/10.1029/2005GL025285

    Article  Google Scholar 

  • Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res. https://doi.org/10.1029/2002WR001808

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. https://doi.org/10.1126/science.1099192

    Article  CAS  Google Scholar 

  • Tareke KA, Awoke AG (2022) Hydrological drought analysis using streamflow drought index (SDI) in Ethiopia. Adv Meteorol 2022:1–19

    Article  Google Scholar 

  • Taye MT, Dyer E, Hirpa FA, Charles K (2018) Climate change impact on water resources in the Awash basin, Ethiopia. Water 10(11):1560. https://doi.org/10.3390/w10111560

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y et al (2013) Ground water and climate change. Nat Clim Change 3(4):322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis (parts 1–3). In: Ned. Akad. Wetensch. Proc. Ser. A, vol. 53, pp 1397–1412

  • Tigabu TB, Wagner PD, Hörmann G, Fohrer N (2020) Modeling the spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, Upper Blue Nile, Ethiopia. Hydrol Res 51:1537–1559

    Article  Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, De Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49(2):904–914. https://doi.org/10.1029/2004GL019779

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time‐variable gravity from GRACE: First results. Geophys Res Lett 31(11)

  • Wang L, Chen C, Ma X, Fu Z, Zheng Y, Peng Z (2020) Evaluation of GRACE mascon solutions using in-situ geodetic data: the case of hydrologic-induced crust displacement in the Yangtze River Basin. Sci Total Environ 707:135606

    Article  CAS  Google Scholar 

  • Wani JM, Sarda VK, Jain SK (2017) Assessment of trends and variability of precipitation and temperature for the district of Mandi in Himachal Pradesh, India. Slovak J Civ Eng 25(3):15–22. https://doi.org/10.1515/sjce-2017-0014

    Article  Google Scholar 

  • Watkins MM, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671. https://doi.org/10.1002/2014JB011547

    Article  Google Scholar 

  • WHYMAP (2005) Groundwater resources of the world at 1:50,000,000. http://www.WHYMAP.org

  • Wolde-Georgis T, Gebru AA, Kinfe YW, Bahiru KM (2022) Ethiopia. In: Glantz MH (ed) El Niño ready nations and disaster risk reduction. Disaster studies and management. Springer, Cham. https://doi.org/10.1007/978-3-030-86503-0_12

    Chapter  Google Scholar 

  • Xie J, Xu YP, Gao C, Xuan W, Bai Z (2019) Total basin discharge from GRACE and water balance method for the Yarlung Tsangpo River basin, Southwestern China. J Geophys Res Atmos 124(14):7617–7632

    Article  Google Scholar 

  • Yang ZY, Wang K, Yuan Y, Huang J, Chen ZJ, Li C (2019) Non-negligible lag of groundwater infiltration recharge: a case in Mu Us Sandy Land, China. Water 11(3):561

    Article  Google Scholar 

  • Yeh PJ-F, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE). Water Resour Res. https://doi.org/10.1029/2006WR005374

    Article  Google Scholar 

  • Yin W, Hu L, Jiao JJ (2017) Evaluation of groundwater storage variations in northern China using GRACE data. Geofluids. https://doi.org/10.1155/2017/8254824

    Article  Google Scholar 

  • Yin W, Hu L, Zhang M, Wang J, Han S-C (2018) Statistical downscaling of GRACE-derived groundwater storage using ET data in the North China plain. J Geophys Res Atmos 123:5973–5987. https://doi.org/10.1029/2017JD027468

    Article  Google Scholar 

  • Zanettin B (1993) The evolution of the Ethiopian volcanic province. In: Geology and mineral resources of Somalia and surrounding regions. First Argon, Fòlorence. 113:279–310

  • Zegeye H (2018) Climate change in Ethiopia: impacts, mitigation and adaptation. Int J Res Environ Stud 5(1):18–35

    Google Scholar 

  • Zeleke T, Giorgi F, Mengistu Tsidu G, Diro GT (2013) Spatial and temporal variability of summer precipitation over Ethiopia from observations and a regional climate model experiment. Theor Appl Climatol 111:665–681

    Article  Google Scholar 

  • Zhang X, Li J, Dong Q, Wang Z, Zhang H, Liu X (2022) Bridging the gap between GRACE and GRACE-FO using a hydrological model. Sci Total Environ 822:153659

    Article  CAS  Google Scholar 

  • Zhu Y, Liu S, Yi Y, Xie F, Grünwald R, Miao W, Wu K, Qi M, Gao Y, Singh D (2021) Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Sci Total Environ 799:149366. https://doi.org/10.1016/j.scitotenv.2021.149366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dire Dawa University for the financial grant for the first author related to his master’s thesis at Addis Ababa University. We sincerely thank the Center for Space Research at the University of Texas at Austin for providing GRACE CSR RL06 Mascon solution. The GLDAS data including soil moisture storage and surface runoff used in this study are acquired as part of the mission of NASA’s Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC).

Funding

This study was supported by Dire Dawa University.

Author information

Authors and Affiliations

Authors

Contributions

Kassahun Aweke Arega and Behailu Birhanu: conceptualization, data analysis, and writing of the manuscript. Kassahun Aweke Arega and Shoaib Ali: satellite data computation, writing, and editing. The other authors reviewed and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kassahun Aweke Arega.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arega, K.A., Birhanu, B., Ali, S. et al. Analysis of spatio-temporal variability of groundwater storage in Ethiopia using Gravity Recovery and Climate Experiment (GRACE) data. Environ Earth Sci 83, 206 (2024). https://doi.org/10.1007/s12665-024-11508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11508-2

Keywords

Navigation