Skip to main content
Log in

Nonlinear flexoelectricity in extended thermodynamics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A nonlinear phenomenological model of flexoelectricity in thermoelastic solids is presented within the frame of continuum mechanics and extended thermodynamics, incorporating the quasi-electrostatic approximation where the time derivative of the electric displacement vector can be neglected in Maxwell–Ampère’s law. An expression for the energy flux is proposed, including many internal variables. An advantage of the proposed model is that it presents a unified approach to study several thermo-electromechanical couplings, including electrostriction, piezoelectricity, dependence of entropy and spontaneous polarization on flexoelectricity, among others. The model may be of interest in revealing the effects of such couplings on the properties of polarizable media, in particular ferroelectrics, when simple boundary conditions prevail. For a fully dynamic description of flexoelectricity, Hamilton’s principle and the variational principle for external forces should be used instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({{{x}}}_{{{i}}},{{i}}=1,2,3\) :

Eulerian coordinates or \({K}_{t}\) refer to current configuration

\({\mathcal{X}}_{{{K}}},{{K}}=1,2,3\) :

Lagrangian coordinates or \({K}_{R}\) refer to reference configuration

\({{{\delta}}}_{{{i}}{{j}}}\) & \({{{\delta}}}_{{{K}}{{L}}}\) :

Krönecker symbols in special and material coordinates

\({{{E}}}_{{{i}}}\) & \({\mathbb{E}}_{{{K}}}\) :

Electric field in Eulerian and Lagrangian configuration

\({{{D}}}_{{{i}}}\) & \({\mathcal{D}}_{{{K}}}\) :

Electric displacement in Eulerian and Lagrangian configuration

\({{{P}}}_{{{i}}}\) & \({\mathcal{P}}_{{{K}}}\) :

Polarization in Eulerian and Lagrangian configuration

\(\boxdot_{\left({{K}}{{L}}\right)}\) :

A parenthesis enclosing two tensorial indices \(K\) and \(L\) means symmetry

\({{{u}}}_{{{k}}}\) & \({\mathcal{U}}_{{{K}}}\) :

Displacement field in Eulerian and Lagrangian configuration

\({\mathcal{E}}_{\left({{K}}{{L}}\right)}\) & \({{{\gamma}}}_{{{I}}\left({{K}}{{L}}\right)}\) :

Strain tensor and its derivative in Lagrangian configuration

\({{{q}}}_{{{i}}}\) & \({\mathcal{Q}}_{{{K}}}\) :

Heat flux vector in Eulerian and Lagrangian configuration

\({{\theta}}\) & \({{\Theta}}\) :

Temperature in Eulerian and Lagrangian configuration

References

  1. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: green’s function solutions and embedded inclusions. Phys. Rev. B Condens. Matter. Mater. Phys. (2006). https://doi.org/10.1103/PhysRevB.74.014110

    Article  Google Scholar 

  2. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology (2013). https://doi.org/10.1088/0957-4484/24/43/432001

    Article  PubMed  Google Scholar 

  3. Yudin, P.V., Tagantsev, A.K.: Basic theoretical description of flexoelectricity in solids. Flexoelectricity Solids (2016). https://doi.org/10.1142/9789814719322_0001

    Article  Google Scholar 

  4. Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25, 946–974 (2013). https://doi.org/10.1002/adma.201203852

    Article  CAS  PubMed  Google Scholar 

  5. Poddar, S., Ducharme, S.: Temperature dependence of flexoelectric response in ferroelectric and relaxor polymer thin films. J. Appl. Phys. 116, 114105 (2014). https://doi.org/10.1063/1.4895988

    Article  CAS  Google Scholar 

  6. Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to fl exoelectricity. Smart Mater. Struct. 24, 105012 (2015). https://doi.org/10.1088/0964-1726/24/10/105012

    Article  CAS  Google Scholar 

  7. He, L., Lou, J., Zhang, A., Wu, H., Du, J., Wang, J.: On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures. AIP Adv. (2017). https://doi.org/10.1063/1.4994021

    Article  Google Scholar 

  8. Huang, S., Qi, L., Huang, W., Shu, L., Zhou, S., Jiang, X.: Flexoelectricity in dielectrics: materials, structures and characterizations. J. Adv. Dielectr. (2018). https://doi.org/10.1142/S2010135X18300025

    Article  Google Scholar 

  9. Zhou, W., Chen, P., Chu, B.: Flexoelectricity in ferroelectric materials. IET Nanodielectrics 2, 83–91 (2019). https://doi.org/10.1049/iet-nde.2018.0030

    Article  Google Scholar 

  10. Shu, L., Liang, R., Rao, Z., Fei, L., Ke, S., Wang, Y.: Flexoelectric materials and their related applications: a focused review. J. Adv. Ceram 8, 153–173 (2019). https://doi.org/10.1007/s40145-018-0311-3

    Article  CAS  Google Scholar 

  11. Wang, B., Gu, Y., Zhang, S., Chen, L.Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. (2019). https://doi.org/10.1016/j.pmatsci.2019.05.003

    Article  Google Scholar 

  12. Lu, J., Liang, X., Yu, W., Hu, S., Shen, S.: Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. J. Phys. D Appl. Phys. 52, aaf543 (2019). https://doi.org/10.1088/1361-6463/aaf543

    Article  CAS  Google Scholar 

  13. El-Dhaba, A.R.: A model for an anisotropic flexoelectric material with cubic symmetry. Int. J. Appl. Mech. (2019). https://doi.org/10.1142/S1758825119500261

    Article  Google Scholar 

  14. El-Dhaba, A.R., Gabr, M.E.: Flexoelectric effect induced in an anisotropic bar with cubic symmetry under torsion. Math. Mech. Solids 25, 1–18 (2019). https://doi.org/10.1177/1081286519895569

    Article  MathSciNet  Google Scholar 

  15. Willatzen, M., Gao, P., Christensen, J., Wang, Z.L.: Acoustic gain in solids due to piezoelectricity, flexoelectricity, and electrostriction morten. Adv. Funct. Mater. 2003503, 1–7 (2020). https://doi.org/10.1002/adfm.202003503

    Article  CAS  Google Scholar 

  16. Zhuang, X., Nguyen, B.H., Nanthakumar, S.S., Tran, T.Q., Alajlan, N., Rabczuk, T.: Computational modeling of flexoelectricity—a review. Energies 16, 1–29 (2020). https://doi.org/10.3390/en13061326

    Article  Google Scholar 

  17. Deng, Q., Lv, S., Li, Z., Tan, K., Liang, X., Shen, S.: The impact of flexoelectricity on materials, devices, and physics. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0015987

    Article  Google Scholar 

  18. Li, G.-E., Kuo, H.-Y.: Effects of strain gradient and electromagnetic field gradient on potential and field distributions of multiferroic fibrous composites. Acta Mech. 232, 1353–1378 (2021). https://doi.org/10.1007/s00707-020-02910-5

    Article  MathSciNet  Google Scholar 

  19. Grasinger, M., Mozaffari, K., Sharma, P.: Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity. PNAS 118, e2102477118 (2021). https://doi.org/10.1073/pnas.2102477118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ji, X.: Nonlinear electromechanical analysis of axisymmetric thin circular plate based on flexoelectric theory. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-01289-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chu, L., Dui, G., Mei, H., Liu, L., Li, Y.: An analysis of flexoelectric coupling associated electroelastic fields in functionally graded semiconductor nanobeams. J. Appl. Phys. 130(11), 115701 (2021). https://doi.org/10.1063/5.0057702

    Article  CAS  Google Scholar 

  22. Gabr, M.E., El-Dhaba, A.R.: Bending flexoelectric effect induced in anisotropic beams with cubic symmetry. Results Phys. 22, 103895 (2021). https://doi.org/10.1016/j.rinp.2021.103895

    Article  Google Scholar 

  23. El-Dhaba, A.R., Gabr, M.E.: Modeling the flexoelectric effect of an anisotropic dielectric nanoplate. Alexandria Eng. J. 60, 3099–3106 (2021). https://doi.org/10.1016/j.aej.2021.01.026

    Article  Google Scholar 

  24. Qu, Y.L., Zhang, G.Y., Gao, X.L., Jin, F.: A new model for thermally induced redistributions of free carriers in centrosymmetric flexoelectric semiconductor beams. Mech. Mater. (2022). https://doi.org/10.1016/j.mechmat.2022.104328

    Article  Google Scholar 

  25. Zhang, G.Y., Guo, Z.W., Qu, Y.L., Gao, X.L., Jin, F.: A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects. Acta Mech. 233, 1719–1738 (2022). https://doi.org/10.1007/s00707-022-03186-7

    Article  MathSciNet  Google Scholar 

  26. Malikan, M., Eremeyev, V.A.: On dynamic modeling of piezomagnetic/flexomagnetic microstructures based on Lord-Shulman thermoelastic model. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02149-7

    Article  Google Scholar 

  27. Zheng, Y., Chu, L., Dui, G., Zhu, X.: Numerical predictions for the effective electrical properties of flexoelectric composites with a single inclusion. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04832-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. Awad, E., El-Dhaba, A.R., Fayik, M.: A unified model for the dynamical flexoelectric effect in isotropic dielectric materials. Eur. J. Mech. A/Solids 1(95), 104618 (2022)

    Article  MathSciNet  Google Scholar 

  29. Li, J., Zhou, S., Wu, K.: A flexoelectric theory with rotation gradient and electric field gradient effects for isotropic dielectrics. Arch. Appl. Mech. 93, 1809–1823 (2023). https://doi.org/10.1007/s00419-022-02357-1

    Article  Google Scholar 

  30. Zhang, G.Y., He, Z.Z., Gao, X.-L., Zhou, H.W.: Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Arch. Appl. Mech. 93, 245–260 (2023). https://doi.org/10.1007/s00419-021-02088-9

    Article  Google Scholar 

  31. Ghobadi, A., Beni, Y.T., Golestanian, H.: Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch. Appl. Mech. 90, 2025–2070 (2020). https://doi.org/10.1007/s00419-020-01708-0

    Article  Google Scholar 

  32. Malikan, M., Wiczenbach, T., Eremeyev, V.A.: On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions. Contin. Mech. Thermodyn. 33, 1281–1297 (2021). https://doi.org/10.1007/s00161-021-00971-y

    Article  MathSciNet  CAS  Google Scholar 

  33. Repka, M., Sladek, J., Sladek, V.: Geometrical nonlinearity for a timoshenko beam with flexoelectricity. Nanomaterials 11, 3123 (2021). https://doi.org/10.3390/nano11113123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rojas, E.F., Faroughi, S., Abdelkefi, A., Park, Y.H.: Nonlinear size dependent modeling and performance analysis of flexoelectric energy harvesters. Microsyst. Technol. 25, 3899–3921 (2019). https://doi.org/10.1007/s00542-019-04348-9

    Article  Google Scholar 

  35. Wang, K.F., Wang, B.L.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 1(116), 88–103 (2017). https://doi.org/10.1016/j.ijengsci.2017.02.010

    Article  Google Scholar 

  36. Remacle, J., Lambrechts, J., Seny, B.: Blossom-Quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. International 70, 1102–1119 (2012). https://doi.org/10.1002/nme

    Article  MathSciNet  Google Scholar 

  37. Ortigosa, R., Gil, A.J.: A new framework for large strain electromechanics based on convex multi-variable strain energies: finite element discretisation and computational implementation. Comput. Methods Appl. Mech. Eng. 302, 329–360 (2016). https://doi.org/10.1016/j.cma.2015.12.007

    Article  MathSciNet  Google Scholar 

  38. Ortigosa, R., Gil, A.J.: A new framework for large strain electromechanics based on convex multi-variable strain energies: conservation laws, hyperbolicity and extension to electro-magneto-mechanics. Comput. Methods Appl. Mech. Eng. 309, 202–242 (2016). https://doi.org/10.1016/j.cma.2016.05.019

    Article  MathSciNet  Google Scholar 

  39. Gil, A.J., Ortigosa, R.: A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput. Methods Appl. Mech. Eng. 302, 293–328 (2016). https://doi.org/10.1016/j.cma.2015.11.036

    Article  MathSciNet  Google Scholar 

  40. Ghaleb, A.F.: Coupled thermoelectroelasticity in extended thermodynamics. Encycl. Therm. Stress. (2014). https://doi.org/10.1007/978-94-007-2739-7_829

    Article  Google Scholar 

  41. Abou-Dina, M.S., El-Dhaba, A.R., Ghaleb, A.F., Rawy, E.K.: A model of nonlinear thermo-electroelasticity in extended thermodynamics. Int. J. Eng. Sci. 119, 29–39 (2017). https://doi.org/10.1016/j.ijengsci.2017.06.010

    Article  MathSciNet  CAS  Google Scholar 

  42. Nelson DF.: Electric, Optic and Acoustic Interactions in Dielectrics. vol. 32. 1981. https://doi.org/10.1088/0031-9112/32/2/044.

  43. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North- Holland, Amsterdam (1988)

    Google Scholar 

  44. Maugin GA. Electromagnetism and Generalized Continua. vol. 541. 2013. https://doi.org/10.1007/978-3-7091-1371-4_6.

  45. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I. Springer-Verlag, New York (1990)

    Book  Google Scholar 

  46. Yang, J.: An Introduction to the theory of piezoelectricity. Adv. Mech. Math. (2005). https://doi.org/10.1007/b101799

    Article  Google Scholar 

  47. Montanaro, A.: On the constitutive relations for second sound in thermo-electroelasticity. Arch Mech 63, 225–254 (2011)

    MathSciNet  Google Scholar 

  48. Kuang, Z.B.: Theory of Electroelasticity. Springer, Berlin Heidelberg (2014)

    Book  Google Scholar 

  49. Montanaro, A.: A Green-Naghdi approach for thermo-electroelasticity. J. Phys. Conf. Ser. (2015). https://doi.org/10.1088/1742-6596/633/1/012129

    Article  Google Scholar 

  50. Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, Cham (2014)

    Book  Google Scholar 

  51. Lee, J.D., Chen, Y., Eskandarian, A.: A micromorphic electromagnetic theory. Int. J. Solids Struct. 41, 2099–2110 (2004). https://doi.org/10.1016/j.ijsolstr.2003.11.031

    Article  Google Scholar 

  52. Erigen, A.C., Maugin, G.A.: Electrodynamics of Continua I. Springer-Verlag, New York (1990)

    Book  Google Scholar 

  53. Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Ration. Mech. Anal. 80, 135–158 (1982). https://doi.org/10.1007/BF00250739

    Article  MathSciNet  Google Scholar 

  54. Ghaleb, A.F.: a model of continuous, thermoelastic media within the frame of extended thermodynamics. Int. J. Eng. Sci. 24, 765–771 (1986). https://doi.org/10.1016/0020-7225(86)90109-6

    Article  Google Scholar 

  55. Maugin, G.A.: Nonlinear Electromechanical Effects and Applications. World Scientific, Singapore (1985)

    Google Scholar 

  56. Johari, G.P.: Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation and glass-formation. J. Chem. Phys. 138, 154503 (2013). https://doi.org/10.1063/1.4799268

    Article  CAS  PubMed  Google Scholar 

  57. Starkov, A.S., Starkov, I.A.: Multicaloric effect in a solid: new aspects. Solids Liq. 119, 258–263 (2014). https://doi.org/10.1134/S1063776114070097

    Article  CAS  Google Scholar 

  58. Yan, Z., Jiang, L.: Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J. Phys. D Appl. Phys. (2013). https://doi.org/10.1088/0022-3727/46/35/355502

    Article  Google Scholar 

  59. Kobayashi, M., Ishikawa, R., Seki, M., Adachi, M., Sarker, S., Takeda, T., et al.: Flexoelectric nanodomains in rare-earth iron garnet thin films under strain gradient. Commun. Mater. 2, 1–9 (2021). https://doi.org/10.1038/s43246-021-00199-y

    Article  CAS  Google Scholar 

  60. Wang, Z., Song, R., Shen, Z., Huang, W., Li, C., Ke, S., Shu, L.: Non-linear behavior of flexoelectricity. Appl. Phys. Lett. 115(25), 252905 (2019). https://doi.org/10.1063/1.5126987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. El-Dhaba.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dhaba, A.R., Abou-Dina, M.S. & Ghaleb, A.F. Nonlinear flexoelectricity in extended thermodynamics. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02554-0

Keywords

Navigation