Skip to main content
Log in

A Bird’s Eye View Approach on the Usage of Deep Learning Methods in Lung Cancer Detection and Future Directions Using X-Ray and CT Images

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This review article provides an overview of recent research on deep learning (DL) methods for identifying and classifying lung nodules in medical images, with a focus on X-ray and CT scans. It encompasses a thorough analysis of studies published in reputed/peer-reviewed journals and international conferences. The review explores various aspects, including the development and implementation of DL models, the use of data augmentation techniques to enhance model performance and the application of transfer learning to adapt existing models to new datasets. The findings highlight the effectiveness of DL techniques in improving accuracy and efficiency in lung nodule detection and classification. Furthermore, these methodologies can be employed to cultivate automated systems that have the potential to aid radiologists in the processes of diagnosis and treatment planning. This review underscores the importance of continued research and development into the present state of DL research about detecting and classifying lung nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shah SNA, Parveen R (2023) An extensive review on lung cancer diagnosis using machine learning techniques on radiological data: state-of-the-art and perspectives. Archives Comput Methods Eng 30(8):4917–4930. https://doi.org/10.1007/s11831-023-09964-3

    Article  Google Scholar 

  2. Pezeshk A, Hamidian S, Petrick N, Sahiner B (2019) 3-D CNN for automatic detection of pulmonary nodules in chest CT. IEEE J Biomed Health Inform 23(5):2080–2090. https://doi.org/10.1109/JBHI.2018.2879449

    Article  PubMed  Google Scholar 

  3. Ozdemir O, Russell RL, Berlin AA (2020) A 3D probabilistic DL system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Trans Med Imaging 39(5):1419–1429. https://doi.org/10.1109/TMI.2019

    Article  PubMed  Google Scholar 

  4. Ali I, Muzammil M, Haq IU, Khaliq AA, Abdullah S (2020) Efficient lung nodule classification using transferable texture convolutional neural network. IEEE Access 8:175859–175870. https://doi.org/10.1109/ACCESS.2020

    Article  Google Scholar 

  5. Liao F, Liang M, Li Z, Hu X, Song S (2019) Evaluate the malignancy of pulmonary nodules using the 3-DDeep leaky noisy-OR network. IEEE Trans Neural Netw Learn Syst 30(11):3484–3495. https://doi.org/10.1109/TNNLS.2019.2892409g

    Article  PubMed  Google Scholar 

  6. Liu W, Liu X, Li H, Li M, Zhao X, Zhu Z (2021a) Integrating lung parenchyma segmentation and nodule detection with deep multi-task learning. IEEE J Biomed Health Inform 25(8):3073–3081. https://doi.org/10.1109/JBHI.2021

    Article  PubMed  Google Scholar 

  7. Xie Y et al (2019) Knowledge-based collaborative DL for benign-malignant lung nodule classification on chest CT. IEEE Trans Med Imaging 38(4):991–1004. https://doi.org/10.1109/TMI.2018

    Article  PubMed  Google Scholar 

  8. Cai L, Long T, Dai Y, Huang Y (2020) Mask R-CNN-based detection and segmentation for pulmonary nodule 3D visualization diagnosis. IEEE Access 8:44400–44409. https://doi.org/10.1109/ACCESS.2020

    Article  Google Scholar 

  9. Zhu H et al (2020) MR-forest: a deep decision framework for false positive reduction in pulmonary nodule detection. IEEE J Biomed Health Inform 24(6):1652–1663. https://doi.org/10.1109/JBHI.2019

    Article  PubMed  Google Scholar 

  10. Saihood A, Karshenas H, Naghsh-Nilchi AR (2023) Multi-Orientation local texture features for guided attention-based fusion in lung nodule classification. IEEE Access 11:17555–17568. https://doi.org/10.1109/ACCESS.2023.3243104

    Article  Google Scholar 

  11. Ann K, Jang Y, Shim H, Chang H-J (2021) Multi-scale conditional generative adversarial network for small-sized lung nodules using class activation region influence maximization. IEEE Access 9:139426–139437. https://doi.org/10.1109/ACCESS.2021.3116034

    Article  Google Scholar 

  12. Liu S et al (2021b) No surprises: training robust lung nodule detection for low-dose CT scans by augmenting with adversarial attacks. IEEE Trans Med Imaging 40(1):335–345. https://doi.org/10.1109/TMI.2020

    Article  ADS  PubMed  Google Scholar 

  13. Nguyen CC, Tran GS, Nguyen VT, Burie J-C, Nghiem TP (2021) Pulmonary nodule detection Basedon faster R-CNN with adaptive anchor box. IEEE Access 9:154740–154751. https://doi.org/10.1109/ACCESS.2021

    Article  Google Scholar 

  14. Wang J et al (2019) Pulmonary nodule detection in volumetric chest CT scans using CNNs-based nodule-size-adaptive detection and classification. IEEE Access 7:46033–46044. https://doi.org/10.1109/ACCESS.2019.290819

    Article  Google Scholar 

  15. Nam JG, Witanto JN, Park SJ, Yoo SJ, Goo JM, Yoon SH (2021) Automatic pulmonary vessel segmentation on non-contrast chest CT: DL algorithm developed using spatiotemporally matched virtual non-contrast images and low-keV contrast-enhanced vessel maps”. Eur Radiol 31:9012–9021. https://doi.org/10.1007/s00330-021-08036-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rezaei SRR, Ahmadi A (2022) A Hierarchical GAN method with ensemble CNN for accurate nodule detection. Int J Comput Assist Radiol Surg. https://doi.org/10.1007/s11548-.22-02807-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Katase S, Ichinose A, Hayashi M, Watanabe M, Chin K, Takeshita Y, Shiga H, Tateishi H, Onozawa S, Shirakawa Y (2022) Yamashita K “Development and evaluation metrics evaluation of a DL lung nodules detection system.” BMC Med Imaging 22:203. https://doi.org/10.1186/s12880-022-09938-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao Y, Tan J, Liang Z, Li L, Huo Y (2019) increased CAD of pulmonary nodules via DL in the sonogram domain. Vis Comput Ind Biomed Art 2:15. https://doi.org/10.1186/s42492-109-0029-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiao Yi, Wang X, Li Q, Fan R, Chen R, Shao Y, Chen Y, Gao Y, Liu A, Chen L, Liu S (2021) A cascade and heterogeneous neural network for CT pulmonary nodule detection and its evaluation on both phantom and patient data. Comput Med Imaging Graph 90:101889. https://doi.org/10.1016/j.compmedimag.2021.101889

    Article  PubMed  Google Scholar 

  20. Halder A, Chatterjee S, Dey D (2022) daptive morphology aided 2-pathway convolutional neural network for lung nodule classification. BiomedSignal Process Control 72:103347. https://doi.org/10.1016/j.bspc.2021.103347

    Article  Google Scholar 

  21. Savitha G, Jidesh P (2020) A holistic DL approach for identification and classification of sub-solid lung nodules in computed tomographic scans. Comput Electr Eng 84:106626. https://doi.org/10.1016/j.compeleceng.2020.106626

    Article  Google Scholar 

  22. Kanipriya M, Hemalatha C, Sridevi N, SriVidhya SR, Jany Shabu SL (2022) An increased capuchin search algorithm optimized hybrid CNN-LSTM architecture for malignant lung nodule detection. Biomed Signal Process Control 78:103973

    Article  Google Scholar 

  23. Xu J, Ren H, Cai S, Zhang X (2023) An increased faster R-CNN algorithm for assisted detection of lung nodules. Comput Biol Med 153:106470. https://doi.org/10.1016/j.compbiomed.2022.106470

    Article  PubMed  Google Scholar 

  24. Halder A, Dey D (2023) Atrous convolution aided integrated framework for lung nodule segmentation and classification. Biomed Signal Process Control 82:104527. https://doi.org/10.1016/j.bspc.2022.104527

    Article  Google Scholar 

  25. Astaraki M, Zakko Y, Dasu IT, Smedby Ö, Wang C (2021) Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features”. Physica Med 83:146–153. https://doi.org/10.1016/j.ejmp.2021.03.013

    Article  Google Scholar 

  26. Mothkur R, Veerappa BN (2023) Classification of lung cancer using lightweight deep neural networks. Procedia Comput Sci 218:1869–1877. https://doi.org/10.1016/j.procs.2023.01.164

    Article  Google Scholar 

  27. Tiwari L, Raja R, Awasthi V, Miri R, Sinha GR, Alkinani MH, Polat K (2021) Detection of lung nodule and cancer using novel Mask-3 FCM and TWEDLNN algorithms. Measurement 172:108882. https://doi.org/10.1016/j.measurement.2020.108882

    Article  Google Scholar 

  28. Suzuki K, Otsuka Y, Nomura Y, Kumamaru KK, Kuwatsuru R, Aoki S (2022) Development and validation of a modified three-dimensional U-net deep-learning model for automated detection of lung nodules on chest CT images from the lung image database consortium and Japanese datasets. Acad Radiol 29(2):S11–S17. https://doi.org/10.1016/j.acra.2020.07.030

    Article  PubMed  Google Scholar 

  29. Qiao J, Fan Y, Zhang M, Fang K, Li D (2023) Wang Z (2023) Ensemble framework based on attributes and deep features for benign-malignant classification of lung nodule. Biomed Signal Process Control 79(2):104217. https://doi.org/10.1016/j.bspc.2022.104217

    Article  Google Scholar 

  30. Shamrat FJ, Azam S, Karim A, Ahmed K, Bui FM, De Boer F (2023) High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Comput Biol Med 155:106646. https://doi.org/10.1016/j.compbiomed.2023.106646

    Article  PubMed  Google Scholar 

  31. Bonavita I, Rafael-Palou X, Ceresa M, Piella G, Ribas V, Ballester MA (2020) Integration of CNN for pulmonary nodule malignancy assessment in a lung cancer classification pipeline. Comput Methods Programs Biomed 185:105172. https://doi.org/10.1016/j.cmpb.2019.105172

    Article  PubMed  Google Scholar 

  32. Afshar P, Naderkhani F, Oikonomou A, Rafiee MJ (2021) MIXCAPS: a capsule network-based mixture of experts for lung nodule malignancy prediction. Pattern Recognit Colume 116:10792. https://doi.org/10.1016/j.patcog.2021.107942

    Article  Google Scholar 

  33. Li X, Shen L, Xie X, Huang S, Xie Z, Hong X, Juan Yu (2020) Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif Intell Med 103:101744. https://doi.org/10.1016/j.artmed.2019.101744

    Article  PubMed  Google Scholar 

  34. Abid MM, Zia T, Ghafoor M, Windridge D (2021) Multi-view convolutional recurrent neural networks for lung cancer nodule identification. Neurocomputing 453:299–311. https://doi.org/10.1016/j.neucom.2020.06.144

    Article  Google Scholar 

  35. Suresh S, Mohan S (2022) NROI based feature learning for automated tumor stage classification of pulmonary lung nodules using deep CNN. J King Saud Univ 34(5):1706–1717. https://doi.org/10.1016/j.jksuci.2019.11.013

    Article  Google Scholar 

  36. Dongdong Gu, Liu G, Xue Z (2021) On the evaluation metrics of lung nodule detection, segmentation and classification. Comput Med Imaging Graph 89:101886. https://doi.org/10.1016/j.compmedimag.2021.101886

    Article  Google Scholar 

  37. Agnes SA, Anitha J, Solomon AA (2022) Two-stage lung nodule detection framework using enhanced UNet and convolutional LSTM networks in CT images. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2022.106059

    Article  Google Scholar 

  38. Shen Z, Cao P, Yang J, Zaiane OR (2023) WS-LungNet: A two-stage weakly-supervised lung cancer detection and diagnosis network. Comput Biol Med 154:106587. https://doi.org/10.1016/j.compbiomed.2023.106587

    Article  PubMed  Google Scholar 

  39. Zhang T, Feng Y, Zhao Y, Fan G, Yang A, Lyu S, Zhang P, Song F, Ma C, Sun Y, Feng Y (2023) MSHT: Multi-stage hybrid transformer for the ROSE image analysis of pancreatic cancer. IEEE J Biomed Health Inform 27(4):1946–1957. https://doi.org/10.1109/JBHI.2023.3234289

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by KK, STG. The first draft of the manuscript was written by KK, STG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Thomas George.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalkeseetharaman, P.K., George, S.T. A Bird’s Eye View Approach on the Usage of Deep Learning Methods in Lung Cancer Detection and Future Directions Using X-Ray and CT Images. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-023-10056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-023-10056-5

Keywords

Navigation