Skip to main content
Log in

Organ Frame Elements or Free Intercellular Gel-Like Matrix as Necessary Conditions for Building Organ Structures during Regeneration

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as “guide rails” for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free “morphogenetic space” containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a “morphogenetic space” could radically improve the results of organ regeneration using both local and exogenous stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. Guo, R., Morimatsu, M., Feng, T., Lan, F., Chang, D., Wan, F., and Ling, Y. (2020) Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction, Stem Cell Res. Ther., 11, 19, https://doi.org/10.1186/s13287-019-1536-y.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., and Drela, K. (2019) Challenges and controversies in human mesenchymal stem cell therapy, Stem Cells Int., 2019, 9628536, https://doi.org/10.1155/2019/9628536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chien, K. R., Frisén, J., Fritsche-Danielson, R., Melton, D. A., Murry, C. E., and Weissman, I. L. (2019) Regenerating the field of cardiovascular cell therapy, Nat. Biotechnol., 37, 232-237, https://doi.org/10.1038/s41587-019-0042-1.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, C. W., Chen, Y. F., Wu, H. H., and Lee, O. K. (2018) Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases, Gastroenterology, 154, 46-56, https://doi.org/10.1053/j.gastro.2017.09.049.

    Article  PubMed  Google Scholar 

  5. Boyd, A., Newsome, P., and Lu, W. Y. (2019) The role of stem cells in liver injury and repair, Expert. Rev. Gastroenterol. Hepatol., 13, 623-631, https://doi.org/10.1080/17474124.2019.1618186.

    Article  CAS  PubMed  Google Scholar 

  6. Brychtova, M., Thiele, J. A., Lysak, D., Holubova, M., Kralickova, M., and Vistejnova, L. (2019) Mesenchymal stem cells as the near future of cardiology medicine – truth or wish? Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub., 163, 8-18, https://doi.org/10.5507/bp.2018.071.

    Article  PubMed  Google Scholar 

  7. Zhu, Y., Chen, X., Yang, X., and El-Hashash, A. (2018) Stem cells in lung repair and regeneration: Current applications and future promise, J. Cell Physiol., 233, 6414-6424, https://doi.org/10.1002/jcp.26414.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y. H., Wu, D. B., Chen, B., Chen, E. Q., and Tang, H. (2018) Progress in mesenchymal stem cell-based therapy for acute liver failure, Stem Cell Res.Ther., 9, 227, https://doi.org/10.1186/s13287-018-0972-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shiota, G., and Itaba, N. (2017) Progress in stem cell-based therapy for liver disease, Hepatol. Res., 47, 127-141, https://doi.org/10.1111/hepr.12747.

    Article  PubMed  Google Scholar 

  10. Jiang, J., Wang, Y., Liu, B., Chen, X., and Zhang, S. (2018) Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke, Brain Dev., 40, 612-626, https://doi.org/10.1016/j.braindev.2018.03.015.

    Article  PubMed  Google Scholar 

  11. Lazzeri, E., Romagnani, P., and Lasagni, L. (2015) Stem cell therapy for kidney disease, Expert Opin. Biol. Ther., 15, 1455-1468, https://doi.org/10.1517/14712598.2015.1067300.

    Article  CAS  PubMed  Google Scholar 

  12. Sagrinati, C., Ronconi, E., Lazzeri, E., Lasagni, L., and Romagnani, P. (2018) Stem-cell approaches for kidney repair: choosing the right cells, Trends Mol. Med., 14, 277-285, https://doi.org/10.1016/j.molmed.2008.05.005.

    Article  CAS  Google Scholar 

  13. Morizane, R., Miyoshi, T., and Bonventre, J. V. (2017) Concise review: kidney generation with human pluripotent stem cells, Stem Cells, 35, 2209-2217, https://doi.org/10.1002/stem.2699.

    Article  PubMed  Google Scholar 

  14. Laflamme, M. A., and Murry, C. E. (2011) Heart regeneration, Nature, 473, 326-335, https://doi.org/10.1038/nature10147.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rota, C., Morigi, M., and Imberti, B. (2019) Stem cell therapies in kidney diseases: progress and challenges, Int. J. Mol. Sci., 20, 2790, https://doi.org/10.3390/ijms20112790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marcheque, J., Bussolati, B., Csete, M., and Perin, L. (2019) Concise reviews: stem cells and kidney regeneration: an update, Stem Cells Transl. Med., 8, 82-92, https://doi.org/10.1002/sctm.18-0115.

    Article  PubMed  Google Scholar 

  17. Fridenshtein, A. Ya, and Lalykina, K. S., Induktsiya kostnoi tkani i osteogennyye kletki-predshestvenniki (Induction of bone tissue and osteogenic cells precursors) [In Russian], Moscow: Meditsina, 1973.

  18. Sedrakyan, S., Angelow, S., De Filippo, R. E., and Perin, L. (2012) Stem cells as a therapeutic approach to chronic kidney diseases, Curr. Urol. Rep., 13, 47-54, https://doi.org/10.1007/s11934-011-0230-0.

    Article  PubMed  Google Scholar 

  19. Cai, P., Ni, R., Lv, M., Liu, H., Zhao, J., He, J., and Luo, L. (2023) VEGF signaling governs the initiation of biliary-mediated liver regeneration through the PI3K-mTORC1 axis, Cell Rep., 42, 113028, https://doi.org/10.1016/j.celrep.2023.113028.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, M., Ren, J., Belmonte, J. C. I., and Liu, G.-H. (2023) Hepatocyte reprogramming in liver regeneration: Biological mechanisms and applications, FEBS J., 290, 5674-5688, https://doi.org/10.1111/febs.16930.

    Article  CAS  PubMed  Google Scholar 

  21. Jin, Y., Li, S., Yu, Q., Chen, T., and Liu, D. (2023) Application of stem cells in regeneration medicine, Med. Commun., 4, e291, https://doi.org/10.1002/mco2.291.

    Article  CAS  Google Scholar 

  22. Liu, D., Cheng, F., Pan, S., and Liu, Z. (2020) Stem cells: a potential treatment option for kidney diseases, Cell Res. Ther., 11, 249, https://doi.org/10.1186/s13287-020-01751-2.

    Article  Google Scholar 

  23. Mangipudy, R. S., Chanda, S., and Mehendale, H. M. (1995) Tissue repair response as a function of dose in thioacetamide hepatotoxicity, Environ. Health Perspect., 103, 260-267, https://doi.org/10.1289/ehp.95103260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manskikh, V. N. (2017) Pathomorphology of a laboratory mouse, Atlas, Vol. 3, VAKO, Moscow.

  25. Strukov, A. I., and Serov, V. V., Patologicheskaya anatomiya (Pathologic anatomy) [In Russian], Moscow: Meditsna, 1995.

  26. Liu, K. D. (2003) Molecular mechanisms of recovery from acute renal failure, Crit. Care Med., 31, 572-581, https://doi.org/10.1097/01.CCM.0000081592.36382.BC.

    Article  CAS  Google Scholar 

  27. Ogbadu, J., Singh, G., and Aggarwal, D. (2019) Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives, Eur. J. Pharmacol., 865, 172711, https://doi.org/10.1016/j.ejphar.2019.172711.

    Article  CAS  PubMed  Google Scholar 

  28. Greaves, P. (2011) Histopathology of Preclinical Toxicity Studies, Academic Press, Elsevier.

  29. Bresler, V. M., Tsitologicheskiye mekhanizmy blastomogeneza v yaichke (Cytological mechanisms of blastogenesis in testicle) [In Russian], Moscow-Leningrad: Nauka 1964.

  30. Moch, H., Humphrey, P. A., Ulbright, T. M., and Reuter, V. (2016) WHO Classification of Tumours of the Urinary System and Male Genital Organs, International Agency for Research on Cancer, Lyon, France, https://doi.org/10.1016/j.eururo.2016.02.028.

  31. Montes, G. S. (1996) Structural biology of the fibres of the collagenous and elastic systems, Cell. Biol. Int., 20, 15-27, https://doi.org/10.1006/cbir.1996.0004.

    Article  CAS  PubMed  Google Scholar 

  32. Ushiki, T. (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint, Arch. Histol. Cytol., 65, 109-126, https://doi.org/10.1679/aohc.65.109.

    Article  PubMed  Google Scholar 

  33. Guvatova, Z. G., Borisov, P. V., Alekseev, A. A., and Moskalev, A. A. (2022) Age-related changes in extracellular matrix, Biochemistry (Moscow), 87, 1535-1551, https://doi.org/10.1134/S0006297922120112.

    Article  CAS  PubMed  Google Scholar 

  34. Bonnans, C., Chou, J., and Werb, Z. (2014) Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell. Biol., 15, 786-801, https://doi.org/10.1038/nrm3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daley, W. P., and Yamada, K. M. (2013) ECM-modulated cellular dynamics as a driving force for tissue morphogenesis, Curr. Opin. Genet. Dev., 23, 408-414, https://doi.org/10.1016/j.gde.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahoney, Z. X., Stappenbeck, T. S., and Miner, J. H. (2008) Laminin α 5 influences the architecture of the mouse small intestine mucosa, J. Cell Sci., 121, 2493-2502, https://doi.org/10.1242/jcs.025528.

    Article  CAS  PubMed  Google Scholar 

  37. Mammoto, T., Jiang, E., Jiang, A., and Mammoto, A. (2013) Extracellular matrix structure and tissue stiffness control postnatal lung development through the lipoprotein receptor-related protein 5/Tie2 signaling system, Am. J. Respir. Cell. Mol. Biol., 49, 1009-1018, https://doi.org/10.1165/rcmb.2013-0147OC.

    Article  CAS  PubMed  Google Scholar 

  38. Nakanishi, Y., Sugiura, F., Kishi, J., and Hayakawa, T. (1986) Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland, Dev. Biol., 113, 201-206, https://doi.org/10.1016/0012-1606(86)90122-3.

    Article  CAS  PubMed  Google Scholar 

  39. Keely, P. J., Wu, J. E., and Santoro, S. A. (1995) The spatial and temporal expression of the α2β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis, Differentiation, 59, 1-13, https://doi.org/10.1046/j.1432-0436.1995.5910001.x.

    Article  CAS  PubMed  Google Scholar 

  40. Brownfield, D. G., Venugopalan, G., Lo, A., Mori, H., Tanner, K., Fletcher, D. A., and Bissell, M. J. (2013) Patterned collagen fibers orient branching mammary epithelium through distinct signaling modules, Curr. Biol., 23, 703-709, https://doi.org/10.1016/j.cub.2013.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liozner, L. D., and Farutina, L. M. (1971) Regeneration of the kidney in newborn rabbits, Bull. Eksp. Biol. Med., 71, 684-686, https://doi.org/10.1007/BF00813598.

    Article  Google Scholar 

  42. Li, X., Liu, D., Xiao, Z., Zhao, Y., Han, S., Chen, B., and Dai, J. (2019) Scaffold-facilitated locomotor improvement post complete spinal cord injury: motor axon regeneration versus endogenous neuronal relay formation, Biomaterials, 197, 20-31, https://doi.org/10.1016/j.biomaterials.2019.01.012.

    Article  CAS  PubMed  Google Scholar 

  43. Peng, Z., Gao, W., Yue, B., Jiang, J., Gu, Y., Dai, J., Chen, L., and Shi, Q. (2018) Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization, J. Tissue Eng. Regen. Med., 12, 1725-1736, https://doi.org/10.1002/term.2358.

    Article  CAS  Google Scholar 

  44. Telegin, G. B., Minakov, A. N., Chernov, A. S., Kazakov, V. A., Kalabina, E. A., Manskikh, V. N., Asyutin, D. S., Belogurov, A. A. Jr, Gabibov, A. G., Konovalov, N. A., and Spallone, A. (2021) A new precision minimally invasive method of glial scar simulation in the rat spinal cord using cryoapplication, Front. Surg., 8, 607551, https://doi.org/10.3389/fsurg.2021.607551.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Karyagina, A., Orlova, P., Poponova, M., Bulygina, I., Choudhary, R., Zhulina, A., Grunina, T., Nikitin, K., Strukova, N., Generalova, M., Ryazanova, A., Kovaleva, P., Zimina, A., Lukinova, E., Plakhotniuk, E., Kirsanova, M., Kolesnikov, E., Zakharova, E., Manskikh, V., Senatov, F., and Gromov, A. (2022) Hybrid implants based on calcium-magnesium silicate ceramics diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: dynamics of reparative osteogenesis in a mouse craniotomy model, Biochemistry (Moscow), 87, 1277-1291, https://doi.org/10.1134/S0006297922110074.

    Article  CAS  PubMed  Google Scholar 

  46. Senatov, F., Zimina, A., Chubrik, A., Kolesnikov, E., Permyakova, E., Voronin, A., Poponova, M., Orlova, P., Grunina, T., Nikitin, K., Krivozubov, M., Strukova, N., Generalova, M., Ryazanova, A., Manskikh, V., Lunin, V., Gromov, A., and Karyagina, A. (2022) Effect of recombinant BMP-2 and erythropoietin on osteogenic properties of biomimetic PLA/PCL/HA and PHB/HA scaffolds in critical-size cranial defects model, Mater. Sci. Eng. C Mater. Biol. Appl., 135, 112680, https://doi.org/10.1016/j.msec.2022.112680.

    Article  CAS  PubMed  Google Scholar 

  47. Zimina, A., Senatov, F., Choudhary, R., Kolesnikov, E., Anisimova, N., Kiselevskiy, M., Orlova, P., Strukova, N., Generalova, M., Manskikh, V., Gromov, A., and Karyagina, A. (2020) Biocompatibility and physico-chemical properties of highly porous PLA/HA Scaffolds for bone reconstruction, Polymers (Basel), 12, 2938, https://doi.org/10.3390/polym12122938.

    Article  CAS  PubMed  Google Scholar 

  48. Kim, I. H., Ko, I. K., Atala, A., and Yoo, J. J. (2015) Whole kidney engineering for clinical translation, Curr. Opin. Organ Transplant., 20, 165-170, https://doi.org/10.1097/MOT.0000000000000173.

    Article  CAS  PubMed  Google Scholar 

  49. Moon, K. H., Ko, I. K., Yoo, J. J., and Atala, A. (2016) Kidney diseases and tissue engineering, Methods, 99, 112-119, https://doi.org/10.1016/j.ymeth.2015.06.020.

    Article  CAS  PubMed  Google Scholar 

  50. Bonandrini, B., Figliuzzi, M., Papadimou, E., Morigi, M., Perico, N., Casiraghi, F., Dipl, C., Sangalli, F., Conti, S., Benigni, A., Remuzzi, A., and Remuzzi, G. (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells, Tissue Eng. Part A, 20, 1486-1498, https://doi.org/10.1089/ten.tea.2013.0269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, H., Xie, S., Yang, Y., Zhang, J., and Zhang, Z. (2018) Multiscale regeneration scaffold in vitro and in vivo, J. Biomed. Mater. Res. B Appl. Biomater., 106, 1218-1225, https://doi.org/10.1002/jbm.b.33926.

    Article  CAS  PubMed  Google Scholar 

  52. Yazdani, M., Shahdadfar, A., Jackson, C. J., and Utheim, T. P. (2019) Hyaluronan-based hydrogel scaffolds for limbal stem cell transplantation: a review, Cells, 8, E245, https://doi.org/10.3390/cells8030245.

    Article  CAS  Google Scholar 

  53. Anrather, J., and Iadecola, C. (2016) Inflammation and stroke: an overview, Neurotherapeutics, 13, 661-670, https://doi.org/10.1007/s13311-016-0483-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prabhu, S. D., and Frangogiannis, N. G. (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis, Circ. Res., 119, 91-112, https://doi.org/10.1161/CIRCRESAHA.116.303577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duann, P., Lianos, E. A., Ma, J., and Lin, P. H. (2016) Autophagy, innate immunity and tissue repair in acute kidney injury, Int. J. Mol. Sci., 17, 662, https://doi.org/10.3390/ijms17050662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brezgunova, A. A., Andrianova, N. V., Popkov, V. A., Tkachev, S. Y., Manskikh, V. N., Pevzner, I. B., Zorova, L. D., Timashev, P. S., Silachev, D. N., Zorov, D. B., and Plotnikov, E. Y. (2023) New experimental model of kidney injury: Photothrombosis-induced kidney ischemia, Biochim. Biophys. Acta Mol. Basis Dis., 1869, 166622, https://doi.org/10.1016/j.bbadis.2022.166622.

    Article  CAS  PubMed  Google Scholar 

  57. Padanilam, B. J. (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis, Am. J. Physiol. Renal. Physiol., 284, 608-627, https://doi.org/10.1152/ajprenal.00284.2002.

    Article  CAS  Google Scholar 

  58. Manskikh, V. N. (2007) Pathways of cell death and their biological importance, Tsitologiya, 49, 909-915.

    CAS  Google Scholar 

  59. Belushkina, I. I., and Severin, S. E. (2001) Molecular basis of apoptosis pathology, Arch. Path., 63, 51-60.

    CAS  Google Scholar 

  60. Pevzner, I. B., Pavlenko, T. A., Popkov, V. A., Andrianova, N. V., Zorova, L. D., Brezgunova, A. A., Zorov, S. D., Yankauskas, S. S., Silachev, D. N., Zorov, D. B., and Plotnikov, E. Y. (2018) Comparative study of the severity of renal damage in newborn and adult rats under conditions of ischemia/reperfusion and endotoxin administration, Bull. Exp. Biol. Med., 65, 189-194, https://doi.org/10.1007/s10517-018-4127-5.

    Article  CAS  Google Scholar 

  61. Aleshin, B. V. (1937) Research on amphibia metamorphosis. Embryonic connective tissue in amphibia, To Academician N. V. Nasonov on Occasion of His Eightieth Birthday and Sixtieth Anniversary of His Scientific Career (Komarov, B. L., ed.) Izd. Akademii Nauk SSSR, Moscow, pp. 570-650.

  62. Falin, L. I. (1976) Human embryology, Atlas, Meditsina, Moscow.

  63. Zhou, B., Feng, Z., Xu, J., and Xie, J. (2023) Organoids: approaches and utility in cancer research, Chin. Med. J. (Engl), 136, 1783-1793, https://doi.org/10.1097/CM9.0000000000002477.

    Article  PubMed  Google Scholar 

  64. Oh, G. C., Choi, Y. J., Park, B. W., Ban, K., and Park, H. J. (2023) Are there hopeful therapeutic strategies to regenerate the infarcted hearts? Korean Circ. J., 53, 367-386, https://doi.org/10.4070/kcj.2023.0098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harrington, R., Harkins, P., and Conway, R. (2023) Targeted therapy in rheumatoid-arthritis-related interstitial lung disease, J. Clin. Med., 12, 6657, https://doi.org/10.3390/jcm12206657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vengerovskii, A. I. (2015) Pharmacology: Lecture Course, GEOTAR-Media, Moscow, 4th Edn.

  67. Park, Ch. H., and Yoo, T.-H. (2022) TGF-β inhibitors for therapeutic management of kidney fibrosis, Pharmaceuticals (Basel), 15, 1485, https://doi.org/10.3390/ph15121485.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao, X., Kwan, J. Y. Y., Yip, K., Liu, P. P., and Liu, F. F. (2020) Targeting metabolic dysregulation for fibrosis therapy, Nat. Rev. Drug Discov., 19, 57-75, https://doi.org/10.1038/s41573-019-0040-5.

    Article  CAS  PubMed  Google Scholar 

  69. Stefanovic, B., Manojlovic, Z., Vied, C., Badger, C. D., and Stefanovic, L. (2019) Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound, Sci. Rep., 9, 326, https://doi.org/10.1038/s41598-018-36841-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Herrera-Rincon, C., Golding, A. S., Moran, K. M., Harrison, C., Martyniuk, C. J., Guay, J. A., Zaltsman, J., Carabello, H., Kaplan, D. L., and Levin, M. (2018) Brief local application of progesterone via a wearable bioreactor induces long-term regenerative response in adult xenopus hindlimb, Cell Rep., 25, 1593-1609.e7, https://doi.org/10.1016/j.celrep.2018.10.010.

    Article  CAS  PubMed  Google Scholar 

  71. Toole, B. P. (1997) Hyaluronan in morphogenesis, J. Intern. Med., 242, 35-40, https://doi.org/10.1046/j.1365-2796.1997.00171.x.

    Article  CAS  PubMed  Google Scholar 

  72. Toole, B. P. (2004) Hyaluronan: from extracellular glue to pericellular cue, Nat. Rev. Cancer, 4, 528-539, https://doi.org/10.1038/nrc1391.

    Article  CAS  PubMed  Google Scholar 

  73. Ahmadian, E., Eftekhari, A., Dizaj, S. M., Sharifi, S., Mokhtarpour, M., Nasibova, A. N., Khalilov, R., and Samiei, M. (2019) The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior, Int. J. Biol. Macromol., 140, 245-254, https://doi.org/10.1016/j.ijbiomac.2019.08.119.

    Article  CAS  PubMed  Google Scholar 

  74. Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A., and Yousefi, M. (2020) Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm, J. Cell Physiol., 235, 706-717, https://doi.org/10.1002/jcp.29004.

    Article  CAS  PubMed  Google Scholar 

  75. Corrao, S., La Rocca, G., Lo Iacono, M., Zummo, G., Gerbino, A., Farina, F., and Anzalone, R. (2013) New frontiers in regenerative medicine in cardiology: the potential of Wharton's jelly mesenchymal stem cells, Curr. Stem Cell Res. Ther., 8, 39-45, https://doi.org/10.2174/1574888X11308010006.

    Article  CAS  PubMed  Google Scholar 

  76. Hirose, S., Honjou, H., Nakagawa, H., Nishimura, K., Kuroda, Y., Tsuji, M., Miwa, A., and Kitagawa, M. (1989) Scirrhous carcinoma of the stomach: a clinical and pathological study of 106 surgical cases, Gastroenterol. Jpn., 24, 481-487, https://doi.org/10.1007/BF02773873.

    Article  CAS  PubMed  Google Scholar 

  77. Van Bogaert, L. J., and Maldague, P. (1980) Scirrhous carcinoma of the female breast, Invest. Cell. Pathol., 3, 377-382.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily N. Manskikh.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The author of this work declares that he has no conflicts of interest in financial or any other sphere.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manskikh, V.N. Organ Frame Elements or Free Intercellular Gel-Like Matrix as Necessary Conditions for Building Organ Structures during Regeneration. Biochemistry Moscow 89, 269–278 (2024). https://doi.org/10.1134/S000629792402007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792402007X

Keywords

Navigation