Skip to main content
Log in

Age-Dependent Changes in the Production of Mitochondrial Reactive Oxygen Species in Human Skeletal Muscle

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Abbreviations

mROS:

mitochondrial reactive oxygen species

References

  1. Harman, D. (1972) The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20, 145-147, https://doi.org/10.1111/j.1532-5415.1972.tb00787.x.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, C. M., Hu, J., Barnes, R. M., Heidt, A. B., Cornelissen, I., and Black, B. L. (2015) Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice, Skelet. Muscle, 5, 7, https://doi.org/10.1186/s13395-015-0031-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hargreaves, M. (2004) Muscle glycogen and metabolic regulation, Proc. Nutr. Soc., 63, 217-220, https://doi.org/10.1079/PNS2004344.

    Article  CAS  PubMed  Google Scholar 

  4. Fealy, C. E., Grevendonk, L., Hoeks, J., and Hesselink, M. K. C. (2021) Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging, Trends Mol. Med., 27, 1033-1044, https://doi.org/10.1016/j.molmed.2021.07.013.

    Article  CAS  PubMed  Google Scholar 

  5. Vogt, C., Yki-Jarvinen, H., Iozzo, P., Pipek, R., Pendergrass, M., Koval, J., Ardehali, H., Printz, R., Granner, D., Defronzo, R., and Mandarino, L. (1998) Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo, J. Clin. Endocrinol. Metab., 83, 230-234, https://doi.org/10.1210/jcem.83.1.4476.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, J. E. (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, J. Exp. Biol., 206, 2049-2057, https://doi.org/10.1242/jeb.00241.

    Article  CAS  PubMed  Google Scholar 

  7. Gots, R. E., Gorin, F. A., and Bessman, S. P. (1972) Kinetic enhancement of bound hexokinase activity by mitochondrial respiration, Biochem. Biophys. Res. Commun., 49, 1249-1255, https://doi.org/10.1016/0006-291x(72)90602-x.

    Article  CAS  PubMed  Google Scholar 

  8. Sui, D., and Wilson, J. E. (1997) Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein, Arch. Biochem. Biophys., 345, 111-125, https://doi.org/10.1006/abbi.1997.0241.

    Article  CAS  PubMed  Google Scholar 

  9. Brdiczka, D., Knoll, G., Riesinger, I., Weiler, U., Klug, G., Benz, R., and Krause, J. (1986) Microcompartmentation at the mitochondrial surface: its function in metabolic regulation, Adv. Exp. Med. Biol., 194, 55-69, https://doi.org/10.1007/978-1-4684-5107-8_5.

    Article  CAS  PubMed  Google Scholar 

  10. Vyssokikh, M., and Brdiczka, D. (2004) VDAC and peripheral channelling complexes in health and disease, Mol. Cell Biochem., 256-257, 117-126, https://doi.org/10.1023/b:mcbi.0000009863.69249.d9.

    Article  PubMed  Google Scholar 

  11. Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria, Arch. Biochem. Biophys., 180, 248-257, https://doi.org/10.1016/0003-9861(77)90035-2.

    Article  CAS  PubMed  Google Scholar 

  12. Morse, P. T., Wan, J., Bell, J., Lee, I., Goebel, D. J., Malek, M. H., Sanderson, T. H., and Huttemann, M. (2022) Sometimes less is more: inhibitory infrared light during early reperfusion calms hyperactive mitochondria and suppresses reperfusion injury, Biochem. Soc. Trans., 50, 1377-1388, https://doi.org/10.1042/BST20220446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15-18, https://doi.org/10.1016/s0014-5793(97)01159-9.

    Article  CAS  PubMed  Google Scholar 

  14. Da-Silva, W. S., Gomez-Puyou, A., de Gomez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria, J. Biol. Chem., 279, 39846-39855, https://doi.org/10.1074/jbc.M403835200.

    Article  CAS  PubMed  Google Scholar 

  15. Vyssokikh, M. Y., Holtze, S., Averina, O. A., Lyamzaev, K. G., Panteleeva, A. A., Marey, M. V., Zinovkin, R. A., Severin, F. F., Skulachev, M. V., Fasel, N., Hildebrandt, T. B., and Skulachev, V. P. (2020) Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program, Proc. Natl. Acad. Sci. USA, 117, 6491-6501, https://doi.org/10.1073/pnas.1916414117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Callahan, D. M., Miller, M. S., Sweeny, A. P., Tourville, T. W., Slauterbeck, J. R., Savage, P. D., Maugan, D. W., Ades, P. A., Beynnon, B. D., and Toth, M. J. (2014) Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner, J. Physiol., 592, 4555-4573, https://doi.org/10.1113/jphysiol.2014.279034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Callahan, D. M., Tourville, T. W., Miller, M. S., Hackett, S. B., Sharma, H., Cruickshank, N. C., Slauterbeck, J. R., Savage, P. D., Ades, P. A., Maughan, D. W., Beynnon, B. D., and Toth, M. J. (2015) Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function, Am. J. Physiol. Cell Physiol., 308, C932-C943, https://doi.org/10.1152/ajpcell.00014.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, M. S., Callahan, D. M., Tourville, T. W., Slauterbeck, J. R., Kaplan, A., Fiske, B. R., Savage, P. D., Ades, P. A., Beynnon, B. D., and Toth, M. J. (2017) Moderate-intensity resistance exercise alters skeletal muscle molecular and cellular structure and function in inactive older adults with knee osteoarthritis, J. Appl. Physiol., 122, 775-787, https://doi.org/10.1152/japplphysiol.00830.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suetta, C., Aagaard, P., Magnusson, S. P., Andersen, L. L., Sipila, S., Rosted, A., Jakobsen, A. K., Duus, B., and Kjaer, M. (2007) Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women: effects of unilateral long-term disuse due to hip-osteoarthritis, J. Appl. Physiol., 102, 942-948, https://doi.org/10.1152/japplphysiol.00067.2006.

    Article  CAS  PubMed  Google Scholar 

  20. Ware, J., Jr., Kosinski, M., and Keller, S. D. (1996) A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity, Med. Care, 34, 220-233, https://doi.org/10.1097/00005650-199603000-00003.

    Article  PubMed  Google Scholar 

  21. Popov, D. V., Makhnovskii, P. A., Shagimardanova, E. I., Gazizova, G. R., Lysenko, E. A., Gusev, O. A., and Vinogradova, O. L. (2019) Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 316, E605-E614, https://doi.org/10.1152/ajpendo.00449.2018.

    Article  CAS  PubMed  Google Scholar 

  22. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-33430-6.

  23. Gnaiger, E., Kuznetsov, A. V., Schneeberger, S., Seiler, R., Brandacher, G., Steurer, W., and Margreiter, R. (2000) Mitochondria in the Cold, in Life in the Cold (Heldmaier, G., Klingenspor, M., Eds.), Springer, Berlin, Heidelberg, pp. 431-442, https://doi.org/10.1007/978-3-662-04162-8_45.

  24. Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R. P. (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases, Anal. Biochem., 253, 162-168, https://doi.org/10.1006/abio.1997.2391.

    Article  CAS  PubMed  Google Scholar 

  25. Shabalina, I. G., Vyssokikh, M. Y., Gibanova, N., Csikasz, R. I., Edgar, D., Hallden-Waldemarson, A., Rozhdestvenskaya, Z., Bakeeva, L. E., Vays, V. B., Pustovidko, A. V., Skulachev, M. V., Cannon, B., Skulachev, V. P., and Nedergaard, J. (2017) Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1, Aging (Albany NY), 9, 315-339, https://doi.org/10.18632/aging.101174.

    Article  CAS  PubMed  Google Scholar 

  26. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273-1287, https://doi.org/10.1134/s0006297908120018.

    Article  CAS  PubMed  Google Scholar 

  27. Shabalina, I. G., Vrbacky, M., Pecinova, A., Kalinovich, A. V., Drahota, Z., Houstek, J., Mracek, T., Cannon, B., and Nedergaard, J. (2014) ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence, Biochim. Biophys. Acta, 1837, 2017-2030, https://doi.org/10.1016/j.bbabio.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  28. Scheer, W. D., Lehmann, H. P., and Beeler, M. F. (1978) An improved assay for hexokinase activity in human tissue homogenates, Anal. Biochem., 91, 451-463, https://doi.org/10.1016/0003-2697(78)90531-6.

    Article  CAS  PubMed  Google Scholar 

  29. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Buscher, T., Luh, E., and Pette, D. (1964) Simple and Compound Optical Tests with Pyridine Nucleotides, in Hoppe-Seyler/Thierfelder, Handbook of Physiological and Pathological Chemical Analysis [in German], VI/A, 292-339, https://doi.org/10.1007/978-3-662-11689-0_6.

  31. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917, https://doi.org/10.1139/o59-099.

    Article  CAS  PubMed  Google Scholar 

  32. Pinault, M., Guimaraes, C., Dumas, J.-F., Servais, S., Chevalier, S., Besson, P., and Goupille, C. (2020) A 1D high performance thin layer chromatography method validated to quantify phospholipids including cardiolipin and monolysocardiolipin from biological samples, Eur. J. Lipid Sci. Technol., 122, 1900240, https://doi.org/10.1002/ejlt.201900240.

    Article  CAS  Google Scholar 

  33. Kruszynska, Y. T., Mulford, M. I., Baloga, J., Yu, J. G., and Olefsky, J. M. (1998) Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects, Diabetes, 47, 1107-1113, https://doi.org/10.2337/diabetes.47.7.1107.

    Article  CAS  PubMed  Google Scholar 

  34. Vestergaard, H., Bjorbaek, C., Hansen, T., Larsen, F. S., Granner, D. K., and Pedersen, O. (1995) Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients, J. Clin. Invest., 96, 2639-2645, https://doi.org/10.1172/JCI118329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ritov, V. B., and Kelley, D. E. (2001) Hexokinase isozyme distribution in human skeletal muscle, Diabetes, 50, 1253-1262, https://doi.org/10.2337/diabetes.50.6.1253.

    Article  CAS  PubMed  Google Scholar 

  36. Mandarino, L. J., Printz, R. L., Cusi, K. A., Kinchington, P., O'Doherty, R. M., Osawa, H., Sewell, C., Consoli, A., Granner, D. K., and DeFronzo, R. A. (1995) Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle, Am. J. Physiol., 269, E701-E708, https://doi.org/10.1152/ajpendo.1995.269.4.E701.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, J. E. (1995) Hexokinases, Rev. Physiol. Biochem. Pharmacol., 126, 65-198, https://doi.org/10.1007/BFb0049776.

    Article  CAS  PubMed  Google Scholar 

  38. Cunha, T. F., Vieira, J. S., Santos, J. B., Coelho, M. A., Brum, P. C., and Gabriel-Costa, D. (2022) Lactate modulates cardiac gene expression in mice during acute physical exercise, Braz. J. Med. Biol. Res., 55, e11820, https://doi.org/10.1590/1414-431X2022e11820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. BeltrandelRio, H., and Wilson, J. E. (1991) Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP, Arch. Biochem. Biophys., 286, 183-194, https://doi.org/10.1016/0003-9861(91)90026-f.

    Article  CAS  PubMed  Google Scholar 

  40. Saraiva, L. M., Seixas da Silva, G. S., Galina, A., da-Silva, W. S., Klein, W. L., Ferreira, S. T., and De Felice, F. G. (2010) Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria, PLoS One, 5, e15230, https://doi.org/10.1371/journal.pone.0015230.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. De-Souza-Ferreira, E., Rios-Neto, I. M., Martins, E. L., and Galina, A. (2019) Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2O2 release and calcium handling in rat brain, J. Neurochem., 149, 624-640, https://doi.org/10.1111/jnc.14705.

    Article  CAS  PubMed  Google Scholar 

  42. Silva-Rodrigues, T., de-Souza-Ferreira, E., Machado, C. M., Cabral-Braga, B., Rodrigues-Ferreira, C., and Galina, A. (2020) Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain, Free Radic. Biol. Med., 160, 796-806, https://doi.org/10.1016/j.freeradbiomed.2020.09.017.

    Article  CAS  PubMed  Google Scholar 

  43. Tan, V. P., Smith, J. M., Tu, M., Yu, J. D., Ding, E. Y., and Miyamoto, S. (2019) Dissociation of mitochondrial HK-II elicits mitophagy and confers cardioprotection against ischemia, Cell Death Dis, 10, 730, https://doi.org/10.1038/s41419-019-1965-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rabbani, N., Xue, M., and Thornalley, P. J. (2022) Hexokinase-2-linked glycolytic overload and unscheduled glycolysis-driver of insulin resistance and development of vascular complications of diabetes, Int. J. Mol. Sci., 23, 2165, https://doi.org/10.3390/ijms23042165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryson, J. M., Coy, P. E., Gottlob, K., Hay, N., and Robey, R. B. (2002) Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death, J. Biol. Chem., 277, 11392-11400, https://doi.org/10.1074/jbc.M110927200.

    Article  CAS  PubMed  Google Scholar 

  46. Ahmad, A., Ahmad, S., Schneider, B. K., Allen, C. B., Chang, L. Y., and White, C. W. (2002) Elevated expression of hexokinase II protects human lung epithelial-like A549 cells against oxidative injury, Am. J. Physiol. Lung Cell. Mol. Physiol., 283, L573-L584, https://doi.org/10.1152/ajplung.00410.2001.

    Article  CAS  PubMed  Google Scholar 

  47. Shilovsky, G. A., Putyatina, T. S., Ashapkin, V. V., Yamskova, O. V., Lyubetsky, V. A., Sorokina, E. V., Shram, S. I., Markov, A. V., and Vyssokikh, M. Y. (2019) Biological diversity and remodeling of cardiolipin in oxidative stress and age-related pathologies, Biochemistry (Moscow), 84, 1469-1483, https://doi.org/10.1134/S000629791912006X.

    Article  CAS  PubMed  Google Scholar 

  48. Bratic, I., and Trifunovic, A. (2010) Mitochondrial energy metabolism and ageing, Biochim. Biophys. Acta, 1797, 961-967, https://doi.org/10.1016/j.bbabio.2010.01.004.

    Article  CAS  PubMed  Google Scholar 

  49. Pedersen, Z. O., Pedersen, B. S., Larsen, S., and Dysgaard, T. (2023) A scoping review investigating the “gene-dosage theory" of mitochondrial DNA in the healthy skeletal muscle, Int. J. Mol. Sci., 24, 8154, https://doi.org/10.3390/ijms24098154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Holloway, G. P., Holwerda, A. M., Miotto, P. M., Dirks, M. L., Verdijk, L. B., and van Loon, L. J. C. (2018) Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle, Cell Rep., 22, 2837-2848, https://doi.org/10.1016/j.celrep.2018.02.069.

    Article  CAS  PubMed  Google Scholar 

  51. BeltrandelRio, H., and Wilson, J. E. (1992) Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP, Arch. Biochem. Biophys., 296, 667-677, https://doi.org/10.1016/0003-9861(92)90625-7.

    Article  CAS  PubMed  Google Scholar 

  52. Vincent, A. M., Olzmann, J. A., Brownlee, M., Sivitz, W. I., and Russell, J. W. (2004) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death, Diabetes, 53, 726-734, https://doi.org/10.2337/diabetes.53.3.726.

    Article  CAS  PubMed  Google Scholar 

  53. Bellanti, F., Lo Buglio, A., and Vendemiale, G. (2022) Muscle delivery of mitochondria-targeted drugs for the treatment of sarcopenia: rationale and perspectives, Pharmaceutics, 14, 2588, https://doi.org/10.3390/pharmaceutics14122588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Russell, J. W., Golovoy, D., Vincent, A. M., Mahendru, P., Olzmann, J. A., Mentzer, A., and Feldman, E. L. (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons, FASEB J., 16, 1738-1748, https://doi.org/10.1096/fj.01-1027com.

    Article  CAS  PubMed  Google Scholar 

  55. Green, K., Brand, M. D., and Murphy, M. P. (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes, Diabetes, 53, S110-S118, https://doi.org/10.2337/diabetes.53.2007.s110.

    Article  CAS  PubMed  Google Scholar 

  56. Vyssokikh, M. Y., Zorova, L., Zorov, D., Heimlich, G., Jurgensmeier, J. J., and Brdiczka, D. (2002) Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect, Mol. Biol. Rep., 29, 93-96, https://doi.org/10.1023/a:1020383108620.

    Article  CAS  PubMed  Google Scholar 

  57. Beutner, G., Ruck, A., Riede, B., and Brdiczka, D. (1997) Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore, Biochem. Soc. Trans., 25, 151-157, https://doi.org/10.1042/bst0250151.

    Article  CAS  PubMed  Google Scholar 

  58. Kunji, E. R., Aleksandrova, A., King, M. S., Majd, H., Ashton, V. L., Cerson, E., Springett, R., Kibalchenko, M., Tavoulari, S., Crichton, P. G., and Ruprecht, J. J. (2016) The transport mechanism of the mitochondrial ADP/ATP carrier, Biochim. Biophys. Acta, 1863, 2379-2393, https://doi.org/10.1016/j.bbamcr.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  59. Duncan, A. L., Ruprecht, J. J., Kunji, E. R. S., and Robinson, A. J. (2018) Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier, Biochim. Biophys. Acta Biomembr., 1860, 1035-1045, https://doi.org/10.1016/j.bbamem.2018.01.017.

    Article  CAS  PubMed  Google Scholar 

  60. Allouche, M., Pertuiset, C., Robert, J. L., Martel, C., Veneziano, R., Henry, C., Sharaf el dein, O., Saint, N., Brenner, C., and Chopineau, J. (2012) ANT-VDAC1 interaction is direct and depends on ANT isoform conformation in vitro, Biochem. Biophys. Res. Commun., 429, 12-17, https://doi.org/10.1016/j.bbrc.2012.10.108.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 21-15-00405, study with healthy volunteers, experiments with mitochondrial respiration) and by the State Assignment of Lomonosov Moscow State University (study with patients, clinical and histological studies).

Author information

Authors and Affiliations

Authors

Contributions

M.Yu.V., A.Yu.E., D.V.P., and V.P.S. concept and management of the work; M.Yu.V., M.A.V., V.V.Ph., Ya.R.B., M.V.M., O.A.G., T.F.V., N.S.K., and L.A.M. conducting experiments; M.Yu.V., M.A.V., A.Yu.E., D.V.P., and V.P.S. discussion of the research results; M.Yu.V., A.Yu.E., and D.V.P. text writing; M.Yu.V., A.Yu.E., and D.V.P. editing the text of the article.

Corresponding author

Correspondence to Mikhail Yu. Vyssokikh.

Ethics declarations

All studies were conducted in accordance with the principles of biomedical ethics as outlined in the 1964 Declaration of Helsinki and its later amendments. Each participant in the study provided a voluntary written informed consent after receiving an explanation of the potential risks and benefits, as well as the nature of the upcoming study. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyssokikh, M.Y., Vigovskiy, M.A., Philippov, V.V. et al. Age-Dependent Changes in the Production of Mitochondrial Reactive Oxygen Species in Human Skeletal Muscle. Biochemistry Moscow 89, 299–312 (2024). https://doi.org/10.1134/S0006297924020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924020093

Keywords

Navigation