Skip to main content
Log in

Exploring Patterns of Human Mortality and Aging: A Reliability Theory Viewpoint

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The most important manifestation of aging is an increased risk of death with advancing age, a mortality pattern characterized by empirical regularities known as mortality laws. We highlight three significant ones: the Gompertz law, compensation effect of mortality (CEM), and late-life mortality deceleration and describe new developments in this area. It is predicted that CEM should result in declining relative variability of mortality at older ages. The quiescent phase hypothesis of negligible actuarial aging at younger adult ages is tested and refuted by analyzing mortality of the most recent birth cohorts. To comprehend the aging mechanisms, it is crucial to explain the observed empirical mortality patterns. As an illustrative example of data-directed modeling and the insights it provides, we briefly describe two different reliability models applied to human mortality patterns. The explanation of aging using a reliability theory approach aligns with evolutionary theories of aging, including idea of chronic phenoptosis. This alignment stems from their focus on elucidating the process of organismal deterioration itself, rather than addressing the reasons why organisms are not designed for perpetual existence. This article is a part of a special issue of the journal that commemorates the legacy of the eminent Russian scientist Vladimir Petrovich Skulachev (1935-2023) and his bold ideas about evolution of biological aging and phenoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Cohen, A. A., Ferrucci, L., Fulop, T., Gravel, D., Hao, N., Kriete, A., Levine, M. E., Lipsitz, L. A., Rikkert, M., Rutenberg, A., Stroustrup, N., and Varadhan, R. (2022) A complex systems approach to aging biology, Nat. Aging, 2, 580-591, https://doi.org/10.1038/s43587-022-00252-6.

    Article  PubMed  Google Scholar 

  2. Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York.

  3. Kirkwood, T. B. L. (1999) Time of Our Lives: The Science of Human Aging, Weidenfeld & Nicolson, London, p. 40.

  4. Kowald, A., and Kirkwood, T. B. L. (2016) Can aging be programmed? A critical literature review, Aging Cell, 15, 986-998, https://doi.org/10.1111/acel.12510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skulachev, M. V., and Skulachev, V. P. (2017) Programmed aging of mammals: Proof of concept and prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 82, 1403-1422, https://doi.org/10.1134/s000629791712001x.

    Article  CAS  PubMed  Google Scholar 

  6. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

    CAS  PubMed  Google Scholar 

  7. Skulachev, V. P. (2001) The programmed death phenomena, aging, and the Samurai law of biology, Exp. Gerontol., 36, 995-1024, https://doi.org/10.1016/s0531-5565(01)00109-7.

    Article  CAS  PubMed  Google Scholar 

  8. Lidsky, P. V., and Andino, R. (2022) Could aging evolve as a pathogen control strategy?, Trends Ecol. Evol., 37, 1046-1057, https://doi.org/10.1016/j.tree.2022.08.003.

    Article  PubMed  Google Scholar 

  9. Gavrilov, L. A., and Gavrilova, N. S. (2006) Reliability Theory of Aging and Longevity, in Handbook of the Biology of Aging (Masoro, E. J., and Austad, S. N. eds.), 6 Ed., Academic Press, San Diego, pp. 3-42, https://doi.org/10.1016/B978-012088387-5/50004-2.

  10. Gaillard, J. M., and Lemaitre, J. F. (2017) The Williams' legacy: A critical reappraisal of his nine predictions about the evolution of senescence, Evolution, 71, 2768-2785, https://doi.org/10.1111/evo.13379.

    Article  PubMed  Google Scholar 

  11. Finch, C. E. (1990) Longevity, Senescence, and the Genome, The University of Chicago Press, Chicago.

  12. Olshansky, S. J., and Carnes, B. A. (1997) Ever since Gompertz, Demography, 34, 1-15, https://doi.org/10.2307/2061656.

    Article  CAS  PubMed  Google Scholar 

  13. Strehler, B. L. (1978) Time, Cells, and Aging, 2nd edition, Academic Press, New York and London.

  14. Greenwood, M. (1928) “Laws” of mortality from the biological point of view, J. Hyg., 28, 267-294, https://doi.org/10.1017/S002217240000961X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kunstyr, I., and Leuenberger, H.-G. W. (1975) Gerontological data of C57BL/6J mice. I. Sex differences in survival curves, J. Gerontol., 30, 157-162, https://doi.org/10.1093/geronj/30.2.157.

    Article  CAS  PubMed  Google Scholar 

  16. Bronikowski, A. M., Alberts, S. C., Altmann, J., Packer, C., Carey, K. D., and Tatar, M. (2002) The aging baboon: comparative demography in a non-human primate, Proc. Natl. Acad. Sci. USA, 99, 9591-9595, https://doi.org/10.1073/pnas.142675599.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bronikowski, A. M., Altmann, J., Brockman, D. K., Cords, M., Fedigan, L. M., Pusey, A., Stoinski, T., Morris, W. F., Strier, K. B., and Alberts, S. C. (2011) Aging in the natural world: comparative data reveal similar mortality patterns across primates, Science, 331, 1325-1328, https://doi.org/10.1126/science.1201571.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philos. Trans. R. Soc. Lond. A, 115, 513-585, https://doi.org/10.1098/rstl.1825.0026.

    Article  ADS  Google Scholar 

  19. Makeham, W. M. (1860) On the law of mortality and the construction of annuity tables, J. Inst. Actuaries, 8, 301-310, https://doi.org/10.1017/S204616580000126X.

    Article  Google Scholar 

  20. Golubev, A. (2004) Does Makeham make sense?, Biogerontology, 5, 159-167, https://doi.org/10.1023/b:bgen.0000031153.63563.58.

    Article  CAS  PubMed  Google Scholar 

  21. Horiuchi, S., and Wilmoth, J. R. (1998) Deceleration in the age pattern of mortality at older ages, Demography, 35, 391-412, https://doi.org/10.2307/3004009.

    Article  CAS  PubMed  Google Scholar 

  22. Carnes, B. A., and Olshansky, S. J. (1997) A biologically motivated partitioning of mortality, Exp. Gerontol., 32, 615-631, https://doi.org/10.1016/s0531-5565(97)00056-9.

    Article  CAS  PubMed  Google Scholar 

  23. Golubev, A. (2009) How could the Gompertz-Makeham law evolve, J. Theor. Biol., 258, 1-17, https://doi.org/10.1016/j.jtbi.2009.01.009.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ricklefs, R. E., and Scheuerlein, A. (2002) Biological implications of the Weibull and Gompertz models of aging, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 57, B69-B76, https://doi.org/10.1093/gerona/57.2.B69.

    Article  Google Scholar 

  25. Vanfleteren, J. R., De Vreese, A., and Braeckman, B. P. (1998) Two-parameter logistic and Weibull equations provide better fits to survival data from isogenic populations of Caenorhabditis elegans in axenic culture than does the Gompertz model, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 53, B393-B403, https://doi.org/10.1093/gerona/53A.6.B393.

    Article  CAS  Google Scholar 

  26. Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103-107, https://doi.org/10.1038/nature16550.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pakin, Y. V., and Hrisanov, S. M. (1984) Critical analysis of the applicability of the gompertz-makeham law in human-populations, Gerontology, 30, 8-12, https://doi.org/10.1159/000212600.

    Article  Google Scholar 

  28. Horiuchi, S., and Wilmoth, J. R. (1997) Age patterns of the life table aging rate for major causes of death in Japan, 1951-1990, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 52, B67-B77, https://doi.org/10.1093/gerona/52A.1.B67.

    Article  CAS  Google Scholar 

  29. Li, T., Yang, Y. C., and Anderson, J. J. (2013) Mortality increase in late-middle and early-old age: heterogeneity in death processes as a new explanation, Demography, 50, 1563-1591, https://doi.org/10.1007/s13524-013-0222-4.

    Article  PubMed  Google Scholar 

  30. Golubev, A. (2023) An underappreciated peculiarity of late-life human mortality kinetics assessed through the lens of a generalization of the Gompertz-Makeham law, Biogerontology, https://doi.org/10.1007/s10522-023-10079-2.

    Article  PubMed  Google Scholar 

  31. Gavrilov, L. A., and Gavrilova, N. S. (2022) Trends in human species-specific lifespan and actuarial aging rate, Biochemistry (Moscow), 87, 1622-1633, https://doi.org/10.1134/S0006297922120173.

    Article  CAS  PubMed  Google Scholar 

  32. Gavrilov, L. A., and Gavrilova, N. S. (2023) Actuarial aging rates in human cohorts, Biochemistry (Moscow), 88, 1778-1785, https://doi.org/10.1134/S0006297923110093.

    Article  CAS  PubMed  Google Scholar 

  33. Gavrilov, L. A., and Gavrilova, N. S. (2001) The reliability theory of aging and longevity, J. Theor. Biol., 213, 527-545, https://doi.org/10.1006/jtbi.2001.2430.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  34. Strehler, B. L., and Mildvan, A. S. (1960) General theory of mortality and aging, Science, 132, 14-21, https://doi.org/10.1126/science.132.3418.14.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Gavrilov, L. A., Gavrilova, N. S., and Yaguzhinsky, L. S. (1978) Main regularities of animal aging and death viewed in terms of reliability theory [In Russian], Zhurn. Obshch. Biol., 39, 734-742.

    CAS  Google Scholar 

  36. Golubev, A. (2019) A 2D analysis of correlations between the parameters of the Gompertz-Makeham model (or law?) of relationships between aging, mortality, and longevity, Biogerontology, 20, 799-821, https://doi.org/10.1007/s10522-019-09828-z.

    Article  CAS  PubMed  Google Scholar 

  37. Shen, J., Landis, G. N., and Tower, J. (2017) Multiple metazoan life-span interventions exhibit a sex-specific Strehler-Mildvan inverse relationship between initial mortality rate and age-dependent mortality rate acceleration, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 72, 44-53, https://doi.org/10.1093/gerona/glw005.

    Article  CAS  Google Scholar 

  38. Tarkhov, A. E., Menshikov, L. I., and Fedichev, P. O. (2017) Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 416, 180-189, https://doi.org/10.1016/j.jtbi.2017.01.017.

    Article  ADS  PubMed  Google Scholar 

  39. Economos, A. C. (1980) Kinetics of metazoan mortality, J. Soc. Biol. Struct., 3, 317-329, https://doi.org/10.1016/0140-1750(80)90039-1.

    Article  Google Scholar 

  40. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) Biodemographic trajectories of longevity, Science, 280, 855-860, https://doi.org/10.1126/science.280.5365.855.

    Article  CAS  PubMed  Google Scholar 

  41. Greenwood, M., and Irwin, J. O. (1939) The biostatistics of senility, Hum. Biol., 11, 1-23.

    Google Scholar 

  42. Rose, M. R., Rauser, C. L., Mueller, L. D., and Benford, G. (2006) A revolution for aging research, Biogerontology, 7, 269-277, https://doi.org/10.1007/s10522-006-9001-6.

    Article  PubMed  Google Scholar 

  43. Curtsinger, J. W., Fukui, H., Townsend, D., and Vaupel, J. W. (1992) Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster, Science, 258, 461-463, https://doi.org/10.1126/science.1411541.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Economos, A. C. (1983) Rate of aging, rate of dying and the mechanism of mortality, Arch. Gerontol. Geriatr., 1, 3-27, https://doi.org/10.1016/0167-4943(82)90003-6.

    Article  Google Scholar 

  45. Gavrilov, L. A., and Gavrilova, N. S. (2011) Mortality measurement at advanced ages: a study of the social security administration death master file, North Am. Actuar. J., 15, 432-447, https://doi.org/10.1080/10920277.2011.10597629.

    Article  MathSciNet  Google Scholar 

  46. Gavrilova, N. S., and Gavrilov, L. A. (2015) Biodemography of old-age mortality in humans and rodents, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 70, 1-9, https://doi.org/10.1093/gerona/glu009.

    Article  Google Scholar 

  47. Dang, L., Camarda, C., Ouellette, N., Mesle, F., Robine, J.-M., and Vallin, J. (2023) The question of the human mortality plateau: Contrasting insights by longevity pioneers, Demograph. Res., 48, 321-338, https://doi.org/10.4054/DemRes.2023.48.11.

    Article  Google Scholar 

  48. Bebbington, M., Green, R., Lai, C. D., and Zitikis, R. (2014) Beyond the Gompertz law: exploring the late-life mortality deceleration phenomenon, Scand. Actuar. J., 3, 189-207, https://doi.org/10.1080/03461238.2012.676562.

    Article  MathSciNet  Google Scholar 

  49. Feehan, D. M. (2018) Separating the signal from the noise: evidence for deceleration in old-age death rates, Demography, 55, 2025-2044, https://doi.org/10.1007/s13524-018-0728-x.

    Article  PubMed  Google Scholar 

  50. Gavrilov, L. A., and Gavrilova, N. S. (2019) New trend in old-age mortality: Gompertzialization of mortality trajectory, Gerontology, 65, 451-457, https://doi.org/10.1159/000500141.

    Article  PubMed  Google Scholar 

  51. Gavrilov, L. A., and Gavrilova, N. S. (2023) Living to 100 in the time of COVID-19: A study of late-life mortality trajectories, in 2023 Living to 100 Compendium, Society of Actuaries, Shaumburg, IL, p. 26.

  52. Economos, A. C. (1979) A non-gompertzian paradigm for mortality kinetics of metazoan animals and failure kinetics of manufactured products, Age, 2, 74-76, https://doi.org/10.1007/BF02432250.

    Article  Google Scholar 

  53. Siler, W. (1979) Competing-risk model for animal mortality, Ecology, 60, 750-757, https://doi.org/10.2307/1936612.

    Article  Google Scholar 

  54. Engelman, M., Seplaki, C. L., and Varadhan, R. (2017) A quiescent phase in human mortality? Exploring the ages of least vulnerability, Demography, 54, 1097-1118, https://doi.org/10.1007/s13524-017-0569-z.

    Article  PubMed  Google Scholar 

  55. Gavrilov, L. A., and Gavrilova, N. S. (2004) Early-life programming of aging and longevity – The idea of high initial damage load (the HIDL hypothesis), in Strategies for Engineered Negligible Senescence: Why Genuine Control of Aging May Be Foreseeable (DeGrey, A. D. N. ed.) New York Acad. Sci., New York, pp. 496-501, https://doi.org/10.1196/annals.1297.091.

  56. Finch, C. E., and Kirkwood, T. B. L. (2000) Chance, Development, and Aging, Oxford University Press, New York, Oxford.

  57. Roy, S., and Majumdar, S. (2022) Developmental noise and stability, in Noise and Randomness in Living System, Springer Singapore, Singapore, pp. 119-124, https://doi.org/10.1007/978-981-16-9583-4_12.

  58. Vaux, D. L., and Korsmeyer, S. J. (1999) Cell Death in Development, Cell, 96, 245-254, https://doi.org/10.1016/S0092-8674(00)80564-4.

    Article  CAS  PubMed  Google Scholar 

  59. Kinzina, E. D., Podolskiy, D. I., Dmitriev, S. E., and Gladyshev, V. N. (2019) Patterns of Aging Biomarkers, Mortality, and Damaging Mutations Illuminate the Beginning of Aging and Causes of Early-Life Mortality, Cell Reports, 29, 4276-4284, https://doi.org/10.1016/j.celrep.2019.11.091.

    Article  CAS  PubMed  Google Scholar 

  60. Gladyshev, V. N. (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes, Aging Cell, 15, 594-602, https://doi.org/10.1111/acel.12480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gavrilov, L. A., and Gavrilova, N. S. (1997) Parental age at conception and offspring longevity, Rev. Clin. Gerontol., 7, 5-12, https://doi.org/10.1017/S0959259897000026.

    Article  Google Scholar 

  62. Gavrilov, L. A., and Gavrilova, N. S. (2015) Predictors of exceptional longevity: Effects of early-life and midlife conditions, and familial longevity, North Am. Actuar. J., 19, 174-186, https://doi.org/10.1080/10920277.2015.1018390.

    Article  MathSciNet  Google Scholar 

  63. Gavrilov, L. A., Gavrilova, N. S., Kroutko, V. N., Evdokushkina, G. N., Semyonova, V. G., Gavrilova, A. L., Lapshin, E. V., Evdokushkina, N. N., and Kushnareva, Y. E. (1997) Mutation load and human longevity, Mutat. Res., 377, 61-62.

    Article  CAS  PubMed  Google Scholar 

  64. Doblhammer, G., and Vaupel, J. (2001) Lifespan depends on month of birth, Proc. Natl. Acad. Sci. USA, 98, 2934-2939, https://doi.org/10.1073/pnas.041431898.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gavrilov, L. A., and Gavrilova, N. S. (2011) Season of birth and exceptional longevity: comparative study of american centenarians, their siblings, and spouses, J. Aging Res., 2011, 104616, https://doi.org/10.4061/2011/104616.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jarry, V., Gagnon, A., and Bourbeau, R. (2013) Maternal age, birth order and other early-life factors: a family-level approach to exploring exceptional survival, Vienna Yearbook Populat. Res., 11, 263-284, https://doi.org/10.1553/populationyearbook2013s267.

    Article  Google Scholar 

  67. Barker, D. J. P. (1998) Mothers, Babies, and Disease in Later Life (2nd Edn), Churchill Livingstone, London.

  68. Kuh, D., and Ben-Shlomo, B. (1997) A Life Course Approach to Chronic Disease Epidemiology, Oxford University Press, Oxford.

  69. Gavrilov, L. A., and Gavrilova, N. S. (2003) Early-life factors modulating lifespan, in Modulating Aging and Longevity (Rattan, S. I. S. ed.) Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 27-50, https://doi.org/10.1007/978-94-017-0283-6_3.

  70. Vaiserman, A. M. (2019) Early Life Origins of Ageing and Longevity, Springer Cham, https://doi.org/10.1007/978-3-030-24958-8.

  71. Leake, D. W. (2022) Tracing slow phenoptosis to the prenatal stage in social vertebrates, Biochemistry (Moscow), 87, 1512-1527, https://doi.org/10.1134/S0006297922120094.

    Article  CAS  PubMed  Google Scholar 

  72. Richardson, R. B., Allan, D. S., and Le, Y. (2014) Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans, Exp. Gerontol., 55, 80-91, https://doi.org/10.1016/j.exger.2014.03.015.

    Article  PubMed  Google Scholar 

  73. Tower, J. (2015) Programmed cell death in aging, Ageing Res. Rev., 23, 90-100, https://doi.org/10.1016/j.arr.2015.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Galkin, F., Zhang, B. H., Dmitriev, S. E., and Gladyshev, V. N. (2019) Reversibility of irreversible aging, Ageing Res. Rev., 49, 104-114, https://doi.org/10.1016/j.arr.2018.11.008.

    Article  PubMed  Google Scholar 

  75. Wu, H. E. (2014) Cell Death. Mechanism and Disease, Springer New York, https://doi.org/10.1007/978-1-4614-9302-0.

  76. Denic, A., Lieske, J. C., Chakkera, H. A., Poggio, E. D., Alexander, M. P., Singh, P., Kremers, W. K., Lerman, L. O., and Rule, A. D. (2016) The substantial loss of nephrons in healthy human kidneys with aging, J. Am. Soc. Nephrol., 28, 313-320, https://doi.org/10.1681/asn.2016020154.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M., and Brown, G. C. (2018) Neuronal cell death, Physiol. Rev., 98, 813-880, https://doi.org/10.1152/physrev.00011.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buetow, D. E. (1971) Cellular content and cellular proliferation changes in the tissues and organs of the aging mammal, in Cellular and Molecular Renewal in the Mammalian Body (Cameron, I. L., and Thrasher, J. D., eds.) Academic Press, New York, pp. 87-107, https://doi.org/10.1016/B978-0-12-156940-2.50010-5.

  79. Clarke, G., Collins, R. A., Leavitt, B. R., Andrews, D. F., Hayden, M. R., Lumsden, C. J., and McInnes, R. R. (2000) A one-hit model of cell death in inherited neuronal degenerations, Nature, 406, 195-199, https://doi.org/10.1038/35018098.

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Clarke, G., and Lumsden, C. J. (2005) Scale-free neurodegeneration: cellular heterogeneity and the stretched exponential kinetics of cell death, J. Theor. Biol., 233, 515-525, https://doi.org/10.1016/j.jtbi.2004.10.028.

    Article  ADS  PubMed  Google Scholar 

  81. Heintz, N. (2000) One-hit neuronal death, Nature, 406, 137-138, https://doi.org/10.1038/35018196.

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Clarke, G., Lumsden, C. J., and McInnes, R. R. (2001) Inherited neurodegenerative diseases: the one-hit model of neurodegeneration, Hum. Mol. Genet., 10, 2269-2275, https://doi.org/10.1093/hmg/10.20.2269.

    Article  CAS  PubMed  Google Scholar 

  83. Holland, D., Desikan, R. S., Dale, A. M., and McEvoy, L. K. (2012) Rates of decline in Alzheimer’s disease decrease with age, PLoS One, 7, 12, https://doi.org/10.1371/journal.pone.0042325.

    Article  CAS  Google Scholar 

  84. Beard, R. E. (1959) Note on some mathematical mortality models, in The lifespan of Animals (Wolstenholme, E. W., and O'Connor, M. O., eds) Little, Brown and Company, Boston, pp. 302-311, https://doi.org/10.1002/9780470715253.app1.

  85. Beard, R. E. (1971) Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes, in Biological Aspects of Demography (Brass, W., ed.), Taylor and Francis, London, pp. 57-68.

  86. Vaupel, J. W., Manton, K. G., and Stallard, E. (1979) Impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 439-454, https://doi.org/10.2307/2061224.

    Article  CAS  PubMed  Google Scholar 

  87. Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1994) A duality in aging – the equivalence of mortality models based on radically different concepts, Mech. Ageing Dev., 74, 1-14, https://doi.org/10.1016/0047-6374(94)90094-9.

    Article  CAS  PubMed  Google Scholar 

  88. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging – slow phenoptosis, Biochemistry (Moscow), 79, 977-993, https://doi.org/10.1134/s0006297914100010.

    Article  CAS  PubMed  Google Scholar 

  89. Steinsaltz, D., and Evans, S. N. (2004) Markov mortality models: implications of quasistationarity and varying initial distributions, Theor. Popul. Biol., 65, 319-337, https://doi.org/10.1016/j.tpb.2003.10.007.

    Article  PubMed  Google Scholar 

  90. Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., and Blasco, M. A. (2019) Telomere shortening rate predicts species life span, Proc. Natl. Acad. Sci. USA, 116, 15122-15127, https://doi.org/10.1073/pnas.1902452116.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gavrilov, L. A. (1978) Mathematical-model of aging of animals, Dokl. Akad. Nauk SSSR, 238, 490-492.

    PubMed  Google Scholar 

  92. Avraam, D., de Magalhaes, J. P., and Vasiev, B. (2013) A mathematical model of mortality dynamics across the lifespan combining heterogeneity and stochastic effects, Exp. Gerontol., 48, 801-811, https://doi.org/10.1016/j.exger.2013.05.054.

    Article  PubMed  Google Scholar 

  93. Milne, E. M. G. (2008) The natural distribution of survival, J. Theor. Biol., 255, 223-236, https://doi.org/10.1016/j.jtbi.2008.07.021.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  94. Laird, R. A., and Sherratt, T. N. (2010) The evolution of senescence in multi-component systems, Biosystems, 99, 130-139, https://doi.org/10.1016/j.biosystems.2009.10.008.

    Article  PubMed  Google Scholar 

  95. Avraam, D., Arnold, S., Jones, D., and Vasiev, B. (2014) Time-evolution of age-dependent mortality patterns in mathematical model of heterogeneous human population, Exp. Gerontol., 60, 18-30, https://doi.org/10.1016/j.exger.2014.09.006.

    Article  PubMed  Google Scholar 

  96. Boonekamp, J. J., Briga, M., and Verhulst, S. (2015) The heuristic value of redundancy models of aging, Exp. Gerontol., 71, 95-102, https://doi.org/10.1016/j.exger.2015.09.005.

    Article  PubMed  Google Scholar 

  97. Charlesworth, B. (1994) Evolution in Age-structured Populations, 2nd Edn., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511525711.

  98. Charlesworth, B. (2000) Fisher, Medawar, Hamilton and the evolution of aging, Genetics, 156, 927-931, https://doi.org/10.1093/genetics/156.3.927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Flatt, T., and Partridge, L. (2018) Horizons in the evolution of aging, BMC Biol., 16, 13, https://doi.org/10.1186/s12915-018-0562-z.

    Article  CAS  Google Scholar 

  100. Skulachev, V. P. (2011) Aging as a particular case of phenoptosis, the programmed death of an organism (A response to Kirkwood and Melov “On the programmed/non-programmed nature of ageing within the life history”), Aging, 3, 1120-1123, https://doi.org/10.18632/aging.100403.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754-760, https://doi.org/10.1134/S0006297912070085.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our deepest gratitude to the late Professor Vladimir Petrovich Skulachev (1935-2023), a distinguished Russian scientist who served as our invaluable scientific mentor and advisor from the 1970s onward. This article is part of a special journal Issue dedicated to honoring his memory. Professor Skulachev played a pivotal role in inspiring the creation of our book, “The Biology of Life Span,” referenced in this article, for which he served as the scientific editor [2]. Furthermore, his encouragement led to a significant collaborative study with him on the variability of human life history traits [101].

Funding

This work was partially supported by the National Institutes of Health (project no. NIH R21AG054849).

Author information

Authors and Affiliations

Authors

Contributions

Leonid A. Gavrilov designed the study, analyzed and interpreted results, and edited the manuscript. Natalia S. Gavrilova conducted statistical analyses and prepared the manuscript.

Corresponding author

Correspondence to Leonid A. Gavrilov.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, L.A., Gavrilova, N.S. Exploring Patterns of Human Mortality and Aging: A Reliability Theory Viewpoint. Biochemistry Moscow 89, 341–355 (2024). https://doi.org/10.1134/S0006297924020123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924020123

Keywords

Navigation