Skip to main content
Log in

Calculating Aging: Analysis of Survival Curves in the Norm and Pathology, Fluctuations in Mortality Dynamics, Characteristics of Lifespan Distribution, and Indicators of Lifespan Variation

  • DISCUSSION
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The article describes the history of studies of survival data carried out at the Research Institute of Physico-Chemical Biology under the leadership of Academician V. P. Skulachev from 1970s until present, with special emphasis on the last decade. The use of accelerated failure time (AFT) model and analysis of coefficient of variation of lifespan (CVLS) in addition to the Gompertz methods of analysis, allows to assess survival curves for the presence of temporal scaling (i.e., manifestation of accelerated aging), without changing the shape of survival curve with the same coefficient of variation. A modification of the AFT model that uses temporal scaling as the null hypothesis made it possible to distinguish between the quantitative and qualitative differences in the dynamics of aging. It was also shown that it is possible to compare the data on the survival of species characterized by the survival curves of the original shape (i.e., “flat” curves without a pronounced increase in the probability of death with age typical of slowly aging species), when considering the distribution of lifespan as a statistical random variable and comparing parameters of such distribution. Thus, it was demonstrated that the higher impact of mortality caused by external factors (background mortality) in addition to the age-dependent mortality, the higher the disorder of mortality values and the greater its difference from the calculated value characteristic of developed countries (15-20%). For comparison, CVLS for the Paraguayan Ache Indians is 100% (57% if we exclude prepuberty individuals as suggested by Jones et al.). According to Skulachev, the next step is considering mortality fluctuations as a measure for the disorder of survival data. Visual evaluation of survival curves can already provide important data for subsequent analysis. Thus, Sokolov and Severin [1] found that mutations have different effects on the shape of survival curves. Type I survival curves generally retains their standard convex rectangular shape, while type II curves demonstrate a sharp increase in the mortality which makes them similar to a concave exponential curve with a stably high mortality rate. It is noteworthy that despite these differences, mutations in groups I and II are of a similar nature. They are associated (i) with “DNA metabolism” (DNA repair, transcription, and replication); (ii) protection against oxidative stress, associated with the activity of the transcription factor Nrf2, and (iii) regulation of proliferation, and (or these categories may overlap). However, these different mutations appear to produce the same result at the organismal level, namely, accelerated aging according to the Gompertz’s law. This might be explained by the fact that all these mutations, each in its own unique way, either reduce the lifespan of cells or accelerate their transition to the senescent state, which supports the concept of Skulachev on the existence of multiple pathways of aging (chronic phenoptosis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AFT:

accelerated failure time model

CV:

coefficient of variation

CVLS :

coefficient of variation of lifespan

References

  1. Sokolov, S. S., and Severin, F. F. (2023) Two types of survival curves in different lines of progeric mice, Biochemistry (Moscow), 89, 367-370, https://doi.org/10.1134/S0006297924020147.

    Article  Google Scholar 

  2. Shilovsky, G. A., Seliverstov, A. V., and Zverkov, O. A., (2023) Demographic indicators, models, and testing, Discrete and Continuous Models and Applied Computational Science, 31, 359-374, https://doi.org/10.22363/2658-4670-2023-31-4-359-374.

    Article  Google Scholar 

  3. Gavrilov, L. A., Gavrilova, N. S., and Iaguzhinskiĭ, L. S. (1978) Basic patterns of aging and death in animals from the standpoint of reliability theory [in Russian], Zhurn. Obshch. Biol., 39, 734-742.

    CAS  Google Scholar 

  4. Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: a Quantitative Approach, Harwood Academic Publisher, New York.

  5. Khaliavkin, A. V. (2001) Influence of environment on the mortality pattern of potentially non-senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46-49.

    CAS  PubMed  Google Scholar 

  6. Tarkhov, A. E., Menshikov, L. I., and Fedichev, P. O. (2017) Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 416, 180-189, https://doi.org/10.1016/j.jtbi.2017.01.017.

    Article  PubMed  Google Scholar 

  7. Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547-1559, https://doi.org/10.1134/S0006297915120020.

    Article  CAS  PubMed  Google Scholar 

  8. Shilovsky, G. A., Putyatina, T. S., Lysenkov, S. N., Ashapkin, V. V., Luchkina, O. S., Markov, A. V., and Skulachev, V. P. (2016) Is it possible to prove the existence of an aging program by quantitative analysis of mortality dynamics? Biochemistry (Moscow), 81, 1461-1476, https://doi.org/10.1134/S0006297916120075.

    Article  CAS  PubMed  Google Scholar 

  9. Shilovsky, G. A., Putyatina, T. S., Ashapkin, V. V., Luchkina, O. S., and Markov, A. V. (2017) Coefficient of variation of lifespan across the tree of life: Is it a signature of programmed aging? Biochemistry (Moscow), 82, 1480-1492, https://doi.org/10.1134/S0006297917120070.

    Article  CAS  PubMed  Google Scholar 

  10. Skulachev, V. P., Shilovsky, G. A., Putyatina, T. S., Popov, N. A., Markov, A. V., Skulachev, M. V., and Sadovnichii, V. A. (2020) Perspectives of Homo sapiens lifespan extension: Focus on external or internal resources? Aging (Albany NY), 12, 5566-5584, https://doi.org/10.18632/aging.102981.

    Article  PubMed  Google Scholar 

  11. Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., Gordon, L. B., Gruenbaum, Y., Khuon, S., Mendez, M., Varga, R., and Collins, F. S. (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome, Proc. Natl. Acad. Sci. USA, 101, 8963-8968, https://doi.org/10.1073/pnas.0402943101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prasher, J. M., Lalai, A. S., Heijmans-Antonissen, C., Ploemacher, R. E., Hoeijmakers, J. H. J., Touw, I. P., and Niedernhofer, L. J. (2005) Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1–/– mice, EMBO J., 24, 861-871, https://doi.org/10.1038/sj.emboj.7600542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oh, Y.S., Kim, D. G., Kim, G., Choi, E.-C., Kennedy, B. K., Suh, Y., Park, B. J., and Kim, S. (2010) Downregulation of lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice, Aging Cell, 9, 810-822, https://doi.org/10.1111/j.1474-9726.2010.00614.x.

    Article  CAS  PubMed  Google Scholar 

  14. Wijshake, T., Malureanu, L. A., Baker, D. J., Jeganathan, K. B., van de Sluis, B., and van Deursen, J. M. (2012) Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation, PLoS Genet., 8, e1003138, https://doi.org/10.1371/journal.pgen.1003138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao, C.-Y. and Kennedy, B. K. (2014) Mouse models and aging: longevity and progeria, Curr. Top. Dev. Biol., 109, 249-285, https://doi.org/10.1016/B978-0-12-397920-9.00003-2.

    Article  PubMed  Google Scholar 

  16. Vermeij, W. P., Dollé, M. E. T., Reiling, E., Jaarsma, D., Payan-Gomez, C., Bombardieri, C. R., Wu, H., Roks, A. J. M., Botter, S. M., van der Eerden, B. C., Youssef, S. A., Kuiper, R. V., Nagarajah, B., van Oostrom, C. T., Brandt, R. M. C., Barnhoorn, S., Imholz, S., Pennings, J. L. A., de Bruin, A., Gyenis, Á., Pothof, J., Vijg, J., van Steeg, H., and Hoeijmakers, J. H. J. (2016) Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice, Nature, 537, 427-431, https://doi.org/10.1038/nature19329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabral, W. A., Tavarez, U. L., Beeram, I., Yeritsyan, D., Boku, Y. D., Eckhaus, M. A., Nazarian, A., Erdos, M. R., and Collins, F. S. (2021) Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson-Gilford progeria syndrome, Aging Cell, 20, e13457, https://doi.org/10.1111/acel.13457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754-760, https://doi.org/10.1134/S0006297912070085.

    Article  CAS  PubMed  Google Scholar 

  19. Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlén, J., García, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169-173, https://doi.org/10.1038/nature12789.

    Article  CAS  PubMed  Google Scholar 

  20. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) Biodemographic trajectories of longevity, Science, 280, 855860, https://doi.org/10.1126/science.280.5365.855.

    Article  Google Scholar 

  21. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699-720, https://doi.org/10.1152/physrev.00040.2015.

    Article  PubMed  Google Scholar 

  22. Skulachev, V. P., Skulachev, M. V., Feniouk, B. A. (2017) Life with No Aging [In Russian], MSU, Moscow.

  23. Cox, D.R. (1972) Regression models and lifetables, J. Roy. Statist. Soc. Ser., 34, 187-202, https://doi.org/10.1111/j.2517-6161.1972.tb00899.x.

    Article  MathSciNet  Google Scholar 

  24. Collett, D. (2003) Modelling Survival Data in Medical Research, Vol. 2. CRC Press, Boca Raton.

  25. Swindell, W.R. (2009) Accelerated failure time models provide a useful statistical framework for aging research, Exp. Gerontol., 44, 190-200, https://doi.org/10.1016/j.exger.2008.10.005.

    Article  PubMed  Google Scholar 

  26. Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., López-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103-107, https://doi.org/10.1038/nature16550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markov, A. V., Naimark, E. B., and Yakovleva, E. U. (2016) Temporal scaling of age-dependent mortality: dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable, Biochemistry (Moscow), 81, 906-911, https://doi.org/10.1134/S0006297916080125.

    Article  CAS  PubMed  Google Scholar 

  28. Asgharian, H., Chang, P. L., Lysenkov, S., Scobeyeva, V. A., Reisen, W. K., and Nuzhdin, S. V. (2015) Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, lifehistory traits and anthropogenic factors, Proc. Biol. Sci., 282, 20150728, https://doi.org/10.1098/rspb.2015.0728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choudhury, A. R., Ju, Z., Djojosubroto, M. W., Schienke, A., Lechel, A., Schaetzlein, S., Jiang, H., Stepczynska, A., Wang, C., Buer, J., Lee, H.-W., von Zglinicki, T., Ganser, A., Schirmacher, P., Nakauchi, H., and Rudolph, K. L., (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation, Nat. Genet., 39, 99-105, https://doi.org/10.1038/ng1937.

    Article  CAS  PubMed  Google Scholar 

  30. Khokhlov, A. N., and Morgunova, G. V. (2017) Testing of geroprotectors in experiments on cell cultures: pros and cons, in Anti-Aging Drugs: From Basic Research to Clinical Practice (Vaiserman A. M., ed) Royal Society of Chemistry, https://doi.org/10.1039/9781782626602-00051.

  31. Khokhlov, A. N. (2010) From Carrel to Hayflick and back or what we got from the 100 years of cytogerontological studies, Radiats. Biol. Radioecol., 50, 304-311, https://doi.org/10.1134/S0006350910050313.

    Article  CAS  PubMed  Google Scholar 

  32. Khokhlov, A. N. (2013) Impairment of regeneration in aging: appropriateness or stochastics? Biogerontology, 14, 703-708, https://doi.org/10.1007/s10522-013-9468-x.

    Article  CAS  PubMed  Google Scholar 

  33. Shilovsky, G. A., Shram, S. I., Morgunova, G. V., and Khokhlov, A. N. (2017) Protein poly(ADP-ribosyl)ation system: Changes in development and aging as well as due to restriction of cell proliferation, Biochemistry (Moscow), 82, 1391-1401, https://doi.org/10.1134/S0006297917110177.

    Article  CAS  PubMed  Google Scholar 

  34. Shilovsky, G. A., Putyatina, T. S., Morgunova, G. V., Seliverstov, A. V., Ashapkin, V. V., Sorokina, E. V., Markov, A. V., and Skulachev, V. P. (2021) A crosstalk between the biorhythms and gatekeepers of longevity: dual role of glycogen synthase kinase-3, Biochemistry (Moscow), 86, 433-448, https://doi.org/10.1134/S0006297921040052.

    Article  CAS  PubMed  Google Scholar 

  35. Omotoso, O., Gladyshev, V. N., and Zhou, X. (2021) Lifespan extension in long-lived vertebrates rooted in ecological adaptation, Front. Cell. Dev. Biol., 9, 704966, https://doi.org/10.3389/fcell.2021.704966.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks A. V. Seliverstov for valuable advice during writing of the article.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

G. A. Shilovsky developed the concept and wrote the article.

Corresponding author

Correspondence to Gregory A. Shilovsky.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovsky, G.A. Calculating Aging: Analysis of Survival Curves in the Norm and Pathology, Fluctuations in Mortality Dynamics, Characteristics of Lifespan Distribution, and Indicators of Lifespan Variation. Biochemistry Moscow 89, 371–376 (2024). https://doi.org/10.1134/S0006297924020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924020159

Keywords

Navigation