Skip to main content
Log in

Retinoprotective Effect of SkQ1, Visomitin Eye Drops, Is Associated with Suppression of P38 MAPK and ERK1/2 Signaling Pathways Activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Visomitin eye drops are the first and, so far, the only drug based on SkQ1 – the mitochondria-targeted antioxidant 10-(6′-plastoquinonyl) decyltriphenylphosphonium, developed in the laboratories of Moscow State University under the leadership of Academician V. P. Skulachev. SkQ1 is considered as a potential tool to combat the aging program. We have previously shown that it is able to prevent and/or suppress development of all manifestations of accelerated senescence in OXYS rats, including retinopathy, similar to the age-related macular degeneration (AMD). Here, we assessed the effect of Visomitin instillations on progression of the AMD-like pathology and p38 MAPK and ERK1/2 activity in the OXYS rat retina (from the age of 9 to 12 months). Wistar and OXYS rats treated with placebo (composition identical to Visomitin with the exception of SkQ1) were used as controls. Ophthalmological examination showed that in the OXYS rats receiving placebo, retinopathy progressed and severity of clinical manifestations did not differ from the intact OXYS rats. Visomitin suppressed progression of the AMD-like pathology in the OXYS rats and significantly improved structural and functional parameters of the retinal pigment epithelium cells and state of microcirculation in the choroid, which, presumably, contributed to preservation of photoreceptors, associative and ganglion neurons. It was found that the activity of p38 MAPK and ERK1/2 in the retina of 12-month-old OXYS rats is higher than that of the Wistar rats of the same age, as indicated by the increased content of phosphorylated forms of p38 MAPK and ERK1/2 and their target protein tau (at position T181 and S396). Visomitin decreased phosphorylation of p38 MAPK, ERK1/2, and tau indicating suppression of activity of these MAPK signaling cascades. Thus, Visomitin eye drops are able to suppress progression of the AMD-like pathology in the OXYS rats and their effect is associated with the decrease in activity of the MAPK signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Abbreviations

Aβ:

amyloid beta

AMD:

age-related macular degeneration

ERK1/2:

extracellular signal-regulated kinase 1 and 2

MAPK:

mitogen-activated protein kinases

mTOR:

mammalian target of rapamycin

RPE:

retinal pigment epithelium

SkQ1:

10-(6′-plastoquinonyl)decyltriphenylphosphonium

VEGF:

vascular endothelial growth factor

References

  1. Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385-1396, https://doi.org/10.1134/s0006297907120139.

    Article  CAS  PubMed  Google Scholar 

  2. Zhdankina, A. A., Fursova, A., Logvinov, S. V., and Kolosova, N. G. (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats, Bull. Exp. Biol. Med., 146, 455-458, https://doi.org/10.1007/s10517-009-0298-4.

    Article  CAS  PubMed  Google Scholar 

  3. Kozhevnikova, O. S., Korbolina, E. E., Stefanova, N. A., Muraleva, N. A., Orlov, Y. L., and Kolosova, N. G. (2013) Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats, Biogerontology, 14, 753-762, https://doi.org/10.1007/s10522-013-9439-2.

    Article  CAS  PubMed  Google Scholar 

  4. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317-1328, https://doi.org/10.1134/s0006297908120043.

    Article  CAS  PubMed  Google Scholar 

  5. Erichev, V. P., Kozlova, I. V., Reshchikova, V. S., Alekseev, V. N., Levko, M. A., Zamyatin, A. A., Gudkova, E. Yu., Koveleva, N. A., Vygodin, V. A., Fedorkin, O. N., Ostapenko, V., Senin, I. I., Savchenko, A. Yu., Popeko, N. A., Skulachev, V. P., and Skulachev, M. V. (2016) Clinical trial examining efficiency and safety of the Visomitin® eye drops in the patients with age-related cataract, Natl Zh. Glaukoma, 15, 61-69.

    Google Scholar 

  6. Wong, W. L., Su, X., Li, X., Cheung, C. M., Klein, R., Cheng, C. Y., and Wong, T. Y. (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis, Lancet, 2, e106-e116, https://doi.org/10.1016/S2214-109X(13)70145-1.

    Article  Google Scholar 

  7. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Zh., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: A genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294-298, https://doi.org/10.1134/S2079057014040146.

    Article  Google Scholar 

  8. Markovets, A. M., Saprunova, V. B., Zhdankina, A. A., Fursova, A. Z.h, Bakeeva, L. E., and Kolosova, N. G. (2011) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats, Aging, 3, 44-54, https://doi.org/10.18632/aging.100243.

    Article  CAS  PubMed  Google Scholar 

  9. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of agerelated alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533, https://doi.org/10.1038/srep41533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr, and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800-826, https://doi.org/10.2174/138945011795528859.

    Article  CAS  PubMed  Google Scholar 

  11. Kolosova, N. G., Kozhevnikova, O. S., Muraleva, N. A., Rudnitskaya, E. A., Rumyantseva, Y. V., Stefanova, N. A., Telegina, D. V., Tyumentsev, M. A., and Fursova, A. Z. (2022) SkQ1 as a tool for controlling accelerated senescence program: experiments with OXYS rats, Biochemistry (Moscow), 87, 1552-1562, https://doi.org/10.1134/S0006297922120124.

    Article  CAS  PubMed  Google Scholar 

  12. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of Wistar and OXYS rats, Biochemistry (Moscow), 77, 648-658, https://doi.org/10.1134/S0006297912060120.

    Article  CAS  PubMed  Google Scholar 

  13. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., Fursova, A. Z., and Kolosova, N. G. (2014) The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMDlike retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, https://doi.org/10.4161/15384101.2014.958393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Telegina, D. V., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2020) Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1, Biochemistry (Moscow), 85, 1640-1649, https://doi.org/10.1134/S0006297920120159.

    Article  CAS  PubMed  Google Scholar 

  15. Muraleva, N. A., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2019) Suppression of AMD-like pathology by mitochondria-targeted antioxidant SkQ1 is associated with a decrease in the accumulation of amyloid β and in mTOR activity, Antioxidants, 8, 177, https://doi.org/10.3390/antiox8060177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tyumentsev, M. A., Stefanova, N. A., Kiseleva, E. V., and Kolosova, N. G. (2018) Mitochondria with morphology characteristic for Alzheimer’s disease patients are found in the brain of OXYS rats, Biochemistry (Moscow), 83, 1083-1088, https://doi.org/10.1134/S0006297918090109.

    Article  CAS  PubMed  Google Scholar 

  17. Stefanova, N. A., Ershov, N. I., and Kolosova, N. G. (2019) Suppression of Alzheimer’s disease-like pathology progression by mitochondria-targeted antioxidant SkQ1: a transcriptome profiling study, Oxid. Med. Cell. Longev., 2019, 3984906, https://doi.org/10.1155/2019/3984906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J., and Jaworski, J. (2017) Molecular neurobiology of mTOR, Neuroscience, 341, 112-153, https://doi.org/10.1016/j.neuroscience.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  19. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2019) p38 MAPK-dependent alphaB-crystallin phosphorylation in Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 119, 45-52, https://doi.org/10.1016/j.exger.2019.01.017.

    Article  CAS  PubMed  Google Scholar 

  20. Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease like pathology in OXYS rats, Antioxidants (Basel), 9, 676, https://doi.org/10.3390/antiox9080676.

    Article  CAS  PubMed  Google Scholar 

  21. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2021) MEK1/2-ERK pathway alterations as a therapeutic target in sporadic Alzheimer’s disease: a study in senescence-accelerated OXYS rats, Antioxidants (Basel), 10, 1058, https://doi.org/10.3390/antiox10071058.

    Article  CAS  PubMed  Google Scholar 

  22. Muraleva, N. A. and Kolosova, N. G. (2023) P38 MAPK signaling in the retina: effects of aging and age-related macular degeneration, Int. J. Mol. Sci., 24, 11586, https://doi.org/10.3390/ijms241411586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muraleva, N. A. and Kolosova, N. G. (2023) Alteration of the MEK1/2-ERK1/2 signaling pathway in the retina associated with age and development of AMD-like retinopathy, Biochemistry (Moscow), 88, 179-188, https://doi.org/10.1134/S0006297923020025.

    Article  CAS  PubMed  Google Scholar 

  24. Kyosseva, S. V. (2016) Targeting MAPK signaling in age-related macular degeneration, Ophthalmol. Eye Dis., 8, 23-30, https://doi.org/10.4137/OED.S32200.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondriatargeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682, https://doi.org/10.1371/journal.pone.0021682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kyriakis, J. M., and Avruch, J. (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update, Physiol. Rev., 92, 689-737, https://doi.org/10.1152/physrev.00028.2011.

    Article  CAS  PubMed  Google Scholar 

  27. Bhutto, I., and Lutty, G. (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex, Mol. Aspects Med., 33, 295-317, https://doi.org/10.1016/j.mam.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khandhadia, S., Cherry, J., and Lotery, A. J. (2012) Age-related macular degeneration, Adv. Exp. Med. Biol., 724, 15-36, https://doi.org/10.1007/978-1-4614-0653-2_2.

    Article  CAS  PubMed  Google Scholar 

  29. Blasiak, J., Pawlowska, E., Szczepanska, J., and Kaarniranta, K. (2019) Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration, Int. J. Mol. Sci., 20, 210, https://doi.org/10.3390/ijms20010210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozhevnikova, O. S., Telegina, D. V., Devyatkin, V. A., and Kolosova, N. G. (2018) Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats, Biogerontology, 19, 223-235, https://doi.org/10.1007/s10522-018-9751-y.

    Article  CAS  PubMed  Google Scholar 

  31. Kozhevnikova, O. S., Telegina, D. V., Tyumentsev, M. A., and Kolosova, N. G. (2019) Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy, Int. J. Mol. Sci., 20, 4804, https://doi.org/10.3390/ijms20194804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaarniranta, K., Blasiak, J., Liton, P., Boulton, M., Klionsky, D. J., and Sinha, D. (2023) Autophagy in age-related macular degeneration, Autophagy, 19, 388-400, https://doi.org/10.1080/15548627.2022.2069437.

    Article  CAS  PubMed  Google Scholar 

  33. Tyumentsev, M. A., Stefanova, N. A., Muraleva, N. A., Rumyantseva, Y. V., Kiseleva, E., Vavilin, V. A., and Kolosova, N. G. (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimer’s Dis., 63, 1075-1088, https://doi.org/10.3233/JAD-180065.

    Article  CAS  Google Scholar 

  34. Kolosova, N. G., Tyumentsev, M. A., Muraleva, N. A., Kiseleva, E., Vitovtov, A. O., and Stefanova, N. A. (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration, Curr. Alzheimer’s Res., 14, 1283-1292, https://doi.org/10.2174/1567205014666170621111033.

    Article  CAS  Google Scholar 

  35. King, R. E., Kent, K. D., and Bomser, J. A. (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition, Chem. Biol. Interac., 151, 143-149, https://doi.org/10.1016/j.cbi.2004.11.003.

    Article  CAS  Google Scholar 

  36. Huang, W. Y., Wu, H., Li, D. J., Song, J. F., Xiao, Y. D., Liu, C. Q., Zhou, J. Z., and Sui, Z. Q. (2018) Protective effects of blueberry anthocyanins against H2O2-induced oxidative injuries in human retinal pigment epithelial cells, J. Agric. Food Chem., 66, 1638-1648, https://doi.org/10.1021/acs.jafc.7b06135.

    Article  CAS  PubMed  Google Scholar 

  37. Milanini, J., Viñals, F., Pouysségur, J., and Pagès, G. (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts, J. Biol. Chem., 273, 18165-18172, https://doi.org/10.1074/jbc.273.29.18165.

    Article  CAS  PubMed  Google Scholar 

  38. Pagès, G., Berra, E., Milanini, J., Levy, A. P., and Pouysségur, J. (2000) Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability, J. Biol. Chem., 275, 26484-26491, https://doi.org/10.1074/jbc.M002104200.

    Article  PubMed  Google Scholar 

  39. Bhutto, I. A., McLeod, D. S., Hasegawa, T., Kim, S. Y., Merges, C., Tong, P., and Lutty, G. A. (2006) Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration, Exp. Eye Res., 82, 99-110, https://doi.org/10.1016/j.exer.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation of Basic Research, grant no. 22-25-00224.

Author information

Authors and Affiliations

Authors

Contributions

N.A.M. concept of the study, conducting experiments, discussion of the results of the study; A.Zh.F. ophthalmological examination of animals; A.A.Zh. histomorphometric analysis of retina samples; A.Zh.F., A.A.Zh., N.A.M., and N.G.K. preparation and editing of the paper text.

Corresponding author

Correspondence to Natalia A. Muraleva.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraleva, N.A., Zhdankina, A.A., Fursova, A.Z. et al. Retinoprotective Effect of SkQ1, Visomitin Eye Drops, Is Associated with Suppression of P38 MAPK and ERK1/2 Signaling Pathways Activity. Biochemistry Moscow 89, 201–211 (2024). https://doi.org/10.1134/S0006297924020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924020020

Keywords

Navigation