Skip to main content
Log in

Safari with an Electron Gun: Visualization of Protein and Membrane Interactions in Mitochondria in Natural Environment

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aβ42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer’s disease. The results showed that the Aβ42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

ATP:

adenosine triphosphate

CLEM:

correlative light and electron microscopy

cryo-EM:

cryogenic electron microscopy

cryo-ET:

cryogenic electron tomography

OXPHOS:

oxidative phosphorylation

TEM:

transmission electron microscopy

References

  1. Saibil, H. R. (2022) Cryo-EM in molecular and cellular biology, Mol. Cell, 82, 274-284, https://doi.org/10.1016/j.molcel.2021.12.016.

    Article  CAS  PubMed  Google Scholar 

  2. Guaita, M., Watters, S. C., and Loerch, S. (2022) Recent advances and current trends in cryo-electron microscopy, Curr. Opin. Struct. Biol., 77, 102484, https://doi.org/10.1016/j.sbi.2022.102484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chua, E. Y. D., Mendez, J. H., Rapp, M., Ilca, S. L., Tan, Y. Z., Maruthi, K., Kuang, H., Zimanyi, C. M., Cheng, A., Eng, E. T., Noble, A. J., Potter, C. S., and Carragher, B. (2022) Better, faster, cheaper: recent advances in cryo-electron microscopy, Annu. Rev. Biochem., 91, 1-32, https://doi.org/10.1146/annurev-biochem-032620-110705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hoffman, D. P., Shtengel, G., Xu, C. S., Campbell, K. R., Freeman, M., Wang, L., Milkie, D. E., Pasolli, H. A., Iyer, N., Bogovic, J. A., Stabley, D. R., Shirinifard, A., Pang, S., Peale, D., Schaefer, K., Pomp, W., Chang, C.-L., Lippincott-Schwartz, J., Kirchhausen, T., Solecki, D. J., Betzig, E., and Hess, H. F. (2020) Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells, Science, 367, eaaz5357, https://doi.org/10.1126/science.aaz5357.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Liu, T., Stephan, T., Chen, P., Keller-Findeisen, J., Chen, J., Riedel, D., Yang, Z., Jakobs, S., and Chen, Z. (2022) Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain, Proc. Natl. Acad. Sci. USA, 119, e2215799119, https://doi.org/10.1073/pnas.2215799119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wang, C., Taki, M., Sato, Y., Tamura, Y., Yaginuma, H., Okada, Y., and Yamaguchi, S. (2019) A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae, Proc. Natl. Acad. Sci. USA, 116, 15817-15822, https://doi.org/10.1073/pnas.1905924116.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nesterov, S., Chesnokov, Y., Kamyshinsky, R., Panteleeva, A., Lyamzaev, K., Vasilov, R., and Yaguzhinsky, L. (2021) Ordered clusters of the complete oxidative phosphorylation system in cardiac mitochondria, Int. J. Mol. Sci., 22, 1462, https://doi.org/10.3390/ijms22031462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nesterov, S. V., Yaguzhinsky, L. S., Vasilov, R. G., Kadantsev, V. N., and Goltsov, A. N. (2022) Contribution of the collective excitations to the coupled proton and energy transport along mitochondrial cristae membrane in oxidative phosphorylation system, Entropy, 24, 1813, https://doi.org/10.3390/e24121813.

    Article  ADS  MathSciNet  CAS  PubMed Central  PubMed  Google Scholar 

  9. Epremyan, K. K., Rogov, A. G., Goleva, T. N., Lavrushkina, S. V., Zinovkin, R. A., and Zvyagilskaya, R. A. (2023) Altered mitochondrial morphology and bioenergetics in a new yeast model expressing Aβ42, Int. J. Mol. Sci., 24, 900, https://doi.org/10.3390/ijms24020900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bischof, J., Hunt, C. J., Rubinsky, B., Burgess, A., and Pegg, D. E. (1990) Effects of cooling rate and glycerol concentration on the structure of the frozen kidney: Assessment by cryo-scanning electron microscopy, Cryobiology, 27, 301-310, https://doi.org/10.1016/0011-2240(90)90029-4.

    Article  CAS  PubMed  Google Scholar 

  11. Plokhikh, K. S., Nesterov, S. V., Chesnokov, Y. M., Rogov, A. G., Kamyshinsky, R. A., Vasiliev, A. L., Yaguzhinsky, L. S., and Vasilov, R. G. (2023) Association of 2-oxoacid dehydrogenase complexes with respirasomes in mitochondria, FEBS J., 291, 16965, https://doi.org/10.1111/febs.16965.

    Article  CAS  Google Scholar 

  12. Nesterov, S. V., Skorobogatova, Y. A., Panteleeva, A. A., Pavlik, L. L., Mikheeva, I. B., Yaguzhinsky, L. S., and Nartsissov, Y. R. (2018) NMDA and GABA receptor presence in rat heart mitochondria, Chem. Biol. Interact., 291, 40-46, https://doi.org/10.1016/j.cbi.2018.06.004.

    Article  CAS  PubMed  Google Scholar 

  13. Sibarita, J.-B. (2005) Deconvolution microscopy, in Microscopy Techniques (Rietdorf, J., ed) Springer, Berlin, Heidelberg, pp. 201-243, https://doi.org/10.1007/b102215.

  14. Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996) Computer visualization of three-dimensional image data using IMOD, J. Struct. Biol., 116, 71-76, https://doi.org/10.1006/jsbi.1996.0013.

    Article  CAS  PubMed  Google Scholar 

  15. Wan, W., and Briggs, J. A. G. (2016) Cryo-Electron Tomography and Subtomogram Averaging, 1st Edn., Elsevier, https://doi.org/10.1016/bs.mie.2016.04.014.

  16. Nesterov, S. V., Chesnokov, Yu. M., Kamyshinsky, R. A., Yaguzhinsky, L. S., and Vasilov, R. G. (2020) Determining the structure and location of the ATP synthase in the membranes of rat’s heart mitochondria using cryoelectron tomography, Nanotechnol. Russia, 15, 83-89, https://doi.org/10.1134/S1995078020010139.

    Article  CAS  Google Scholar 

  17. Liu, Y.-T., Zhang, H., Wang, H., Tao, C.-L., Bi, G.-Q., and Zhou, Z. H. (2022) Isotropic reconstruction for electron tomography with deep learning, Nat. Commun., 13, 6482, https://doi.org/10.1038/s41467-022-33957-8.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  18. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V., and Fernandez, J. J. (2014) Robust membrane detection based on tensor voting for electron tomography, J. Struct. Biol., 186, 49-61, https://doi.org/10.1016/j.jsb.2014.02.015.

    Article  PubMed  Google Scholar 

  19. Castaño-Díez, D., Kudryashev, M., Arheit, M., and Stahlberg, H. (2012) Dynamo: A flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments, J. Struct. Biol., 178, 139-151, https://doi.org/10.1016/j.jsb.2011.12.017.

    Article  PubMed  Google Scholar 

  20. Tegunov, D., and Cramer, P. (2019) Real-time cryo-electron microscopy data preprocessing with Warp, Nat. Methods, 16, 1146-1152, https://doi.org/10.1038/s41592-019-0580-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bharat, T. A. M., and Scheres, S. H. W. (2016) Resolving macromolecular structures from electron cryo-Tomography data using subtomogram averaging in RELION, Nat. Protoc., 11, 2054-2065, https://doi.org/10.1038/nprot.2016.124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Förster, F., Danev, R., and Baumeister, W. (2015) A molecular census of 26S proteasomes in intact neurons, Science, 347, 439-442, https://doi.org/10.1126/science.1261197.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ashleigh, T., Swerdlow, R. H., and Beal, M. F. (2023) The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis, Alzheimers Dement. J. Alzheimers Assoc., 19, 333-342, https://doi.org/10.1002/alz.12683.

    Article  CAS  Google Scholar 

  24. Bhatia, S., Rawal, R., Sharma, P., Singh, T., Singh, M., and Singh, V. (2022) Mitochondrial dysfunction in Alzheimer’s disease: opportunities for drug development, Curr. Neuropharmacol., 20, 675-692, https://doi.org/10.2174/1570159X19666210517114016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Eubel, H., Heinemeyer, J., and Braun, H.-P. (2004) Identification and characterization of respirasomes in potato mitochondria, Plant Physiol., 134, 1450-1459, https://doi.org/10.1104/pp.103.038018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chaban, Y., Boekema, E. J., and Dudkina, N. V. (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilization, Biochim. Biophys. Acta, 1837, 418-426, https://doi.org/10.1016/j.bbabio.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  27. Dudkina, N. V., Kouřil, R., Peters, K., Braun, H.-P., and Boekema, E. J. (2010) Structure and function of mitochondrial supercomplexes, Biochim. Biophys. Acta, 1797, 664-670, https://doi.org/10.1016/j.bbabio.2009.12.013.

    Article  CAS  PubMed  Google Scholar 

  28. Bultema, J. B., Braun, H.-P., Boekema, E. J., and Kouril, R. (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato, Biochim. Biophys. Acta, 1787, 60-67, https://doi.org/10.1016/j.bbabio.2008.10.010.

    Article  CAS  PubMed  Google Scholar 

  29. Dudkina, N. V., Kudryashev, M., Stahlberg, H., and Boekema, E. J. (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography, Proc. Natl. Acad. Sci. USA, 108, 15196-15200, https://doi.org/10.1073/pnas.1107819108.

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  30. Mühleip, A., Flygaard, R. K., Baradaran, R., Haapanen, O., Gruhl, T., Tobiasson, V., Maréchal, A., Sharma, V., and Amunts, A. (2023) Structural basis of mitochondrial membrane bending by the I-II-III2-IV2 supercomplex, Nature, 615, 934-938, https://doi.org/10.1038/s41586-023-05817-y.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  31. Guo, R., Zong, S., Wu, M., Gu, J., and Yang, M. (2017) Architecture of human mitochondrial respiratory megacomplex I2III2IV2, Cell, 170, 1247-1257.e12, https://doi.org/10.1016/j.cell.2017.07.050.

    Article  CAS  PubMed  Google Scholar 

  32. Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., and Yang, M. (2016) The architecture of the mammalian respirasome, Nature, 537, 639-643, https://doi.org/10.1038/nature19359.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Vercellino, I., and Sazanov, L. A. (2021) Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV, Nature, 598, 364-367, https://doi.org/10.1038/s41586-021-03927-z.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Klusch, N., Dreimann, M., Senkler, J., Rugen, N., Kühlbrandt, W., and Braun, H.-P. (2023) Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution, Nat Plants., 9, 142-156, https://doi.org/10.1038/s41477-022-01308-6.

    Article  CAS  PubMed  Google Scholar 

  35. Kühlbrandt, W. (2015) Structure and function of mitochondrial membrane protein complexes, BMC Biol., 13, 89, https://doi.org/10.1186/s12915-015-0201-x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Strauss, M., Hofhaus, G., Schröder, R. R., and Kühlbrandt, W. (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane, EMBO J., 27, 1154-1160, https://doi.org/10.1038/emboj.2008.35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Garab, G., Yaguzhinsky, L. S., Dlouhý, O., Nesterov, S. V., Špunda, V., and Gasanoff, E. S. (2022) Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes, Prog. Lipid. Res., 86, 101163, https://doi.org/10.1016/j.plipres.2022.101163.

    Article  CAS  PubMed  Google Scholar 

  38. Gasanov, S. E., Kim, A. A., Yaguzhinsky, L. S., and Dagda, R. K. (2018) Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity, Biochim. Biophys. Acta, 1860, 586-599, https://doi.org/10.1016/j.bbamem.2017.11.014.

    Article  CAS  Google Scholar 

  39. Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F. M., and Petrosillo, G. (2014) Functional role of cardiolipin in mitochondrial bioenergetics, Biochim. Biophys. Acta, 1837, 408-417, https://doi.org/10.1016/j.bbabio.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  40. Epremyan, K. K., Goleva, T. N., Rogov, A. G., Lavrushkina, S. V., Zinovkin, R. A., and Zvyagilskaya, R. A. (2022) The first Yarrowia lipolytica yeast models expressing hepatitis B virus X protein: changes in mitochondrial morphology and functions, Microorganism, 10, 1817, https://doi.org/10.3390/microorganisms10091817.

    Article  CAS  Google Scholar 

  41. Völgyi, K., Badics, K., Sialana, F. J., Gulyássy, P., Udvari, E. B., Kis, V., Drahos, L., Lubec, G., Kékesi, K. A., and Juhász, G. (2018) Early presymptomatic changes in the proteome of mitochondria-associated membrane in the APP/PS1 mouse model of Alzheimer’s disease, Mol. Neurobiol., 55, 7839-7857, https://doi.org/10.1007/s12035-018-0955-6.

    Article  CAS  PubMed  Google Scholar 

  42. Buzhynskyy, N., Sens, P., Prima, V., Sturgis, J. N., and Scheuring, S. (2007) Rows of ATP synthase dimers in native mitochondrial inner membranes, Biophys. J., 93, 2870-2876, https://doi.org/10.1529/biophysj.107.109728.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  43. Blum, T. B., Hahn, A., Meier, T., Davies, K. M., and Kühlbrandt, W. (2019) Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows, Proc. Natl. Acad. Sci. USA, 116, 4250-4255, https://doi.org/10.1073/pnas.1816556116.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  44. Davies, K. M., Blum, T. B., and Kühlbrandt, W. (2018) Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants, Proc. Natl. Acad. Sci. USA, 115, 3024-3029, https://doi.org/10.1073/pnas.1720702115.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  45. Beltrán-Heredia, E., Tsai, F.-C., Salinas-Almaguer, S., Cao, F. J., Bassereau, P., and Monroy, F. (2019) Membrane curvature induces cardiolipin sorting, Commun. Biol., 2, 225, https://doi.org/10.1038/s42003-019-0471-x.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Arias-Cartin, R., Grimaldi, S., Arnoux, P., Guigliarelli, B., and Magalon, A. (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications, Biochim. Biophys. Acta, 1817, 1937-1949, https://doi.org/10.1016/j.bbabio.2012.04.005.

    Article  CAS  PubMed  Google Scholar 

  47. Arnarez, C., Marrink, S. J., and Periole, X. (2013) Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels, Sci. Rep., 3, 1263, https://doi.org/10.1038/srep01263.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  48. Duncan, A. L., Robinson, A. J., and Walker, J. E. (2016) Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases, Proc. Natl. Acad. Sci. USA, 113, 8687-8692, https://doi.org/10.1073/pnas.1608396113.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pfeiffer, K., Gohil, V., Stuart, R. A., Hunte, C., Brandt, U., Greenberg, M. L., and Schägger, H. (2003) Cardiolipin stabilizes respiratory chain supercomplexes, J. Biol. Chem., 278, 52873-52880, https://doi.org/10.1074/jbc.M308366200.

    Article  CAS  PubMed  Google Scholar 

  50. Mühleip, A., McComas, S. E., and Amunts, A. (2019) Structure of a mitochondrial ATP synthase with bound native cardiolipin, eLife, 8, e51179, https://doi.org/10.7554/eLife.51179.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Mileykovskaya, E., and Dowhan, W. (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes, Chem. Phys. Lipids, 179, 42-48, https://doi.org/10.1016/j.chemphyslip.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, M., Mileykovskaya, E., and Dowhan, W. (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria, J. Biol. Chem., 280, 29403-29408, https://doi.org/10.1074/jbc.M504955200.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, M., Mileykovskaya, E., and Dowhan, W. (2002) Gluing the Respiratory Chain Together cardiolipin is required for supercomplex formation in the inner mitochondrial membrane, J. Biol. Chem., 277, 43553-43556, https://doi.org/10.1074/jbc.C200551200.

    Article  CAS  PubMed  Google Scholar 

  54. Mileykovskaya, E., and Dowhan, W. (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes, Biochim. Biophys. Acta, 1788, 2084-2091, https://doi.org/10.1016/j.bbamem.2009.04.003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Diaz-Rohrer, B., Levental, K. R., and Levental, I. (2014) Rafting through traffic: Membrane domains in cellular logistics, Biochim. Biophys. Acta, 1838, 3003-3013, https://doi.org/10.1016/j.bbamem.2014.07.029.

    Article  CAS  PubMed  Google Scholar 

  56. Zabara, A., Meikle, T. G., Newman, J., Peat, T. S., Conn, C. E., and Drummond, C. J. (2017) The nanoscience behind the art of in meso crystallization of membrane proteins, Nanoscale, 9, 754-763, https://doi.org/10.1039/C6NR07634C.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the NRC Kurchatov Institute (thematic plan 1f.4.1 “Study of energy generation, transfer and distribution processes in living organisms aimed at finding new approaches to the development of therapeutic agents, new bioenergetic devices and artificial photosynthesis systems”).

Author information

Authors and Affiliations

Authors

Contributions

S.V.N. planned and performed experiments, manually analyzed tomograms, prepared the manuscript; D.A.M., T.N.G., and A.G.R. planned and conducted CLEM experiments with yeast; K.S.P. and Yu.M.Ch. conduct TEM and CLEM experiments, perform computer processing of the tomographic data. L.S.Y. and R.G.V. developed the study concept, supervised the study. All authors discussed the results and contribute to the manuscript editing.

Corresponding author

Correspondence to Semen V. Nesterov.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, S.V., Plokhikh, K.S., Chesnokov, Y.M. et al. Safari with an Electron Gun: Visualization of Protein and Membrane Interactions in Mitochondria in Natural Environment. Biochemistry Moscow 89, 257–268 (2024). https://doi.org/10.1134/S0006297924020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924020068

Keywords

Navigation