Skip to main content
Log in

Biological Clocks: Why We Need Them, Why We Cannot Trust Them, How They Might Be Improved

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Late in life, the body is at war with itself. There is a program of self-destruction (phenoptosis) implemented via epigenetic and other changes. I refer to these as type (1) epigenetic changes. But the body retains a deep instinct for survival, and other epigenetic changes unfold in response to a perception of accumulated damage (type (2)). In the past decade, epigenetic clocks have promised to accelerate the search for anti-aging interventions by permitting prompt, reliable, and convenient measurement of their effects on lifespan without having to wait for trial results on mortality and morbidity. However, extant clocks do not distinguish between type (1) and type (2). Reversing type (1) changes extends lifespan, but reversing type (2) shortens lifespan. This is why all extant epigenetic clocks may be misleading. Separation of type (1) and type (2) epigenetic changes will lead to more reliable clock algorithms, but this cannot be done with statistics alone. New experiments are proposed. Epigenetic changes are the means by which the body implements phenoptosis, but they do not embody a clock mechanism, so they cannot be the body’s primary timekeeper. The timekeeping mechanism is not yet understood, though there are hints that it may be (partially) located in the hypothalamus. For the future, we expect that the most fundamental measurement of biological age will observe this clock directly, and the most profound anti-aging interventions will manipulate it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Gilpin, M. (1975) Group Selection in Predator-Prey Communities, Princeton University Press, https://doi.org/10.2307/j.ctvx5wbvr.

  2. Hypermethylated and hypomethylated should not be confused with type (1) and type (2). These ways of categorizing CpG sites are independent and cut across each other.

References

  1. Medawar, P.B. (1952) An Unsolved Problem of Biology, Published for the college by H. K. Lewis, London, 24 p.

  2. Williams, G. C. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution11, 398-411, https://doi.org/10.2307/2406060.

    Article  Google Scholar 

  3. Mitteldorf, J. (2001) Can current evolutionary theory explain experimental data on aging?, Sci. Aging Knowledge Environ.2001, vp9, https://doi.org/10.1126/sageke.2001.12.vp9.

    Article  CAS  PubMed  Google Scholar 

  4. Mitteldorf, J. (2004) Ageing selected for its own sake, Evol. Ecol. Res.6, 937-953.

    Google Scholar 

  5. Kirkwood, T. B. L. (1977) Evolution of ageing, Nature270, 301-304, https://doi.org/10.1038/270301a0.

    Article  CAS  PubMed  Google Scholar 

  6. Mitteldorf, J. (2001) Can experiments on caloric restriction be reconciled with the disposable soma theory for the evolution of senescence?, Evolution55, 1902-1905, https://doi.org/10.1111/j.0014-3820.2001.tb00841.x.

    Article  CAS  PubMed  Google Scholar 

  7. Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol.132, 145-162, https://doi.org/10.1016/s0022-5193(88)80153-x.

    Article  CAS  PubMed  Google Scholar 

  8. Bowles, J. T. (1998) The evolution of aging: a new approach to an old problem of biology, Med. Hypotheses51, 179-221, https://doi.org/10.1016/s0306-9877(98)90079-2.

    Article  CAS  PubMed  Google Scholar 

  9. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow)64, 1418-1426.

    CAS  PubMed  Google Scholar 

  10. Mitteldorf, J. (2017) Aging is a Group-Selected Adaptation: Theory, Evidence, and Medical Implications, CRC Press, https://doi.org/10.1201/9781315371214.

  11. Dytham, C., and Travis, J. M. J. (2006) Evolving dispersal and age at death, Oikos113, 530-538, https://doi.org/10.1111/j.2006.0030-1299.14395.x.

    Article  Google Scholar 

  12. Mitteldorf, J. (2006) Chaotic population dynamics and the evolution of aging: proposing a demographic theory of senescence, Evol. Ecol. Res., 8, 561-574.

    Google Scholar 

  13. Mitteldorf, J., and Pepper, J. (2009) Senescence as an adaptation to limit the spread of disease, J. Theor. Biol.260, 186-195, https://doi.org/10.1016/j.jtbi.2009.05.013.

    Article  MathSciNet  PubMed  Google Scholar 

  14. Martins, A. C. R. (2011) Change and aging senescence as an adaptation, PLoS One6, e24328, https://doi.org/10.1371/journal.pone.0024328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitteldorf, J., and Goodnight, C. (2012) Post-reproductive life span and demographic stability, Oikos121, 1370-1378, https://doi.org/10.1111/j.1600-0706.2012.19995.x.

    Article  Google Scholar 

  16. Werfel, J., Ingber, D. E., and Bar-Yam, Y. (2015) Programed death is favored by natural selection in spatial systems, Phys. Rev. Lett.114, 238103, https://doi.org/10.1103/physrevlett.114.238103.

    Article  PubMed  Google Scholar 

  17. Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nat. Rev. Genet.6, 866-872, https://doi.org/10.1038/nrg1706.

    Article  CAS  PubMed  Google Scholar 

  18. Galimov, E. R., and Gems, D. (2020) Shorter life and reduced fecundity can increase colony fitness in virtual Caenorhabditis elegansAging Cell19, e13141, https://doi.org/10.1111/acel.13141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Travis, J. M. J. (2004) The evolution of programmed death in a spatially structured population, J. Gerontol. A Biol. Sci. Med. Sci.59, B301-B305, https://doi.org/10.1093/gerona/59.4.b301.

    Article  Google Scholar 

  20. Lenart, P., and Bienertová-Vašků, J. (2016) Keeping up with the Red Queen: the pace of aging as an adaptation, Biogerontology18, 693-709, https://doi.org/10.1007/s10522-016-9674-4.

    Article  PubMed  Google Scholar 

  21. Mitteldorf, J., and Martins, A. C. R. (2014) Programmed life span in the context of evolvability, Am. Nat.184, 289-302, https://doi.org/10.1086/677387.

    Article  PubMed  Google Scholar 

  22. Anisimov, V. N., Berstein, L. M., Egormin, P. A., Piskunova, T. S., Popovich, I. G., Zabezhinski, M. A., Tyndyk, M. L., Yurova, M. V., Kovalenko, I. G., Poroshina, T. E., and Semenchenko, A. V. (2008) Metformin slows down aging and extends life span of female SHR mice, Cell Cycle7, 2769-2773, https://doi.org/10.4161/cc.7.17.6625.

    Article  CAS  PubMed  Google Scholar 

  23. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., and Miller, R. A. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature460, 392-395, https://doi.org/10.1038/nature08221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anisimov, V. N., and Khavinson, V. Kh. (2009) Peptide bioregulation of aging: results and prospects, Biogerontology11, 139-149, https://doi.org/10.1007/s10522-009-9249-8.

    Article  CAS  PubMed  Google Scholar 

  25. Strong, R., Miller, R. A., Astle, C. M., Floyd, R. A., Flurkey, K., Hensley, K. L., Javors, M. A., Leeuwenburgh, C., Nelson, J. F., Ongini, E., Nadon, N. L., Warner, H. R., and Harrison, D. E. (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice, Aging Cell7, 641-650, https://doi.org/10.1111/j.1474-9726.2008.00414.x.

    Article  CAS  PubMed  Google Scholar 

  26. Tuohimaa, P. (2009) Vitamin D and aging, J. Steroid Biochem. Mol. Biol.114, 78-84, https://doi.org/10.1016/j.jsbmb.2008.12.020.

    Article  CAS  PubMed  Google Scholar 

  27. Sharman, E. H., Bondy, S. C., Sharman, K. G., Lahiri, D., Cotman, C. W., and Perreau, V. M. (2007) Effects of melatonin and age on gene expression in mouse CNS using microarray analysis, Neurochem. Int.50, 336-344, https://doi.org/10.1016/j.neuint.2006.09.001.

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez, M. I., Escames, G., López, L. C., López, A., García, J. A., Ortiz, F., Sánchez, V., Romeu, M., and Acuña-Castroviejo, D. (2008) Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice, Exp. Gerontol.43, 749-756, https://doi.org/10.1016/j.exger.2008.04.003.

    Article  CAS  PubMed  Google Scholar 

  29. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Yu., Fetisova, E. K., Ivanova, O. Yu., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Yu., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells, Biochemistry (Moscow)73, 1300-1316, https://doi.org/10.1134/s0006297908120031.

    Article  CAS  PubMed  Google Scholar 

  30. Flurkey, K., Astle, C. M., and Harrison, D. E. (2010) Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice, J. Gerontol. A Biol. Sci. Med. Sci.65A, 1275-1284, https://doi.org/10.1093/gerona/glq155.

    Article  CAS  PubMed Central  Google Scholar 

  31. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol.14, R115, https://doi.org/10.1186/gb-2013-14-10-r115.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., and Zhang, K. (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell49, 359-367, https://doi.org/10.1016/j.molcel.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  33. Franceschi, C., and Campisi, J. (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J. Gerontol. A Biol. Sci. Med. Sci.69, S4-S9, https://doi.org/10.1093/gerona/glu057.

    Article  PubMed  Google Scholar 

  34. Dirks, A., and Leeuwenburgh, C. (2002) Apoptosis in skeletal muscle with aging, Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, R519-R527, https://doi.org/10.1152/ajpregu.00458.2001.

    Article  CAS  PubMed  Google Scholar 

  35. Lev, N., Melamed, E., and Offen, D. (2003) Apoptosis and Parkinson’s disease, Prog. Neuropsychopharmacol. Biol. Psychiatry27, 245-250, https://doi.org/10.1016/s0278-5846(03)00019-8.

    Article  CAS  PubMed  Google Scholar 

  36. Rubinsztein, D. C., Mariño, G., and Kroemer, G. (2011) Autophagy and aging, Cell146, 682-695, https://doi.org/10.1016/j.cell.2011.07.030.

    Article  CAS  PubMed  Google Scholar 

  37. Shindyapina, A. V., Cho, Y., Kaya, A., Tyshkovskiy, A., Castro, J. P., Deik, A., Gordevicius, J., Poganik, J. R., Clish, C. B., Horvath, S., Peshkin, L., and Gladyshev, V. N. (2022) Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna, Sci. Adv.8, eabo5482, https://doi.org/10.1126/sciadv.abo5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Waziry, R., Ryan, C. P., Corcoran, D. L., Huffman, K. M., Kobor, M. S., Kothari, M., Graf, G. H., Kraus, V. B., Kraus, W. E., Lin, D. T. S., Pieper, C. F., Ramaker, M. E., Bhapkar, M., Das, S. K., Ferrucci, L., Hastings, W. J., Kebbe, M., Parker, D. C., Racette, S. B., Shalev, I., Schilling, B., and Belsky, D. W. (2023) Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial, Nat. Aging3, 248-257, https://doi.org/10.1038/s43587-022-00357-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horvath, S., Singh, K., Raj, K., Khairnar, S., Sanghavi, A., Shrivastava, A., Zoller, J. A., Li, C. Z., Herenu, C. B., Canatelli-Mallat, M., Lehmann, M., Solberg Woods, L. C., Martinez, A. G., Wang, T., Chiavellini, P., Levine, A. J., Chen, H., Goya, R. G., and Katcher, H. L. (2020) Reversing age: dual species measurement of epigenetic age with a single clock, bioRxiv, https://doi.org/10.1101/2020.05.07.082917.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Horvath, S., Singh, K., Raj, K., Khairnar, S. I., Sanghavi, A., Shrivastava, A., Zoller, J. A., Li, C. Z., Herenu, C. B., Canatelli-Mallat, M., Lehmann, M., Habazin, S., Novokmet, M., Vučković, F., Solberg Woods, L. C., Martinez, A. G., Wang, T., Chiavellini, P., Levine, A. J., Chen, H., Brooke, R. T., Gordevicius, J., Lauc, G., Goya, R. G., and Katcher, H. L. (2023) Reversal of biological age in multiple rat organs by young porcine plasma fraction, GeroScience46, 367-394, https://doi.org/10.1007/s11357-023-00980-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitteldorf, J. (2023) Harold Katcher’s Last Rat, in Aging Matters Blog, URL: https://joshmitteldorf.scienceblog.com/2023/03/13/harold-katchers-last-rat/.

  42. Mei, X., Blanchard, J., Luellen, C., Conboy, M. J., and Conboy, I. M. (2023) Fail-tests of DNA methylation clocks, and development of a noise barometer for measuring epigenetic pressure of aging and disease, Aging15, 8552-8575, https://doi.org/10.18632/aging.205046.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., and Horvath, S. (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan, Aging11, 303-327, https://doi.org/10.18632/aging.101684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., and Horvath, S. (2018) An epigenetic biomarker of aging for lifespan and healthspan, Aging10, 573-591, https://doi.org/10.18632/aging.101414.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Neafsey, P. J. (1990) Longevity hormesis. A review, Mech. Ageing Dev., 51, 1-31, https://doi.org/10.1016/0047-6374(90)90158-c.

    Article  CAS  PubMed  Google Scholar 

  46. Masoro, E.J. (2007) The role of hormesis in life extension by dietary restriction, Interdiscip. Top. Gerontol.35, 1-17.

    CAS  PubMed  Google Scholar 

  47. Katcher, H., and Sanghavi, A. (2022) Anti-Aging Compositions and Uses Thereof, Google Patents.

  48. Wilkinson, J. E., Burmeister, L., Brooks, S. V., Chan, C.-C., Friedline, S., Harrison, D. E., Hejtmancik, J. F., Nadon, N., Strong, R., Wood, L. K., Woodward, M. A., and Miller, R. A. (2012) Rapamycin slows aging in mice, Aging Cell, 11, 675-682, https://doi.org/10.1111/j.1474-9726.2012.00832.x.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar, P., Osahon, O. W., and Sekhar, R. V. (2022) GlyNAC (glycine and N-acetylcysteine) supplementation in mice increases length of life by correcting glutathione deficiency, oxidative stress, mitochondrial dysfunction, abnormalities in mitophagy and nutrient sensing, and genomic damage, Nutrients14, 1114, https://doi.org/10.3390/nu14051114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging – slow phenoptosis, Biochemistry (Moscow)79, 977-993, https://doi.org/10.1134/s0006297914100010.

    Article  CAS  PubMed  Google Scholar 

  51. Rahman, S., and Islam, R. (2011) Mammalian Sirt1: insights on its biological functions, Cell Commun. Signal.9, 11, https://doi.org/10.1186/1478-811x-9-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martins, R., Lithgow, G. J., and Link, W. (2015) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity, Aging Cell15, 196-207, https://doi.org/10.1111/acel.12427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herzig, S., and Shaw, R. J. (2017) AMPK: guardian of metabolism and mitochondrial homeostasis, Nat. Rev. Mol. Cell Biol.19, 121-135, https://doi.org/10.1038/nrm.2017.95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, J.-H., Hwang, K.-H., Park, K.-S., Kong, I. D., and Cha, S.-K. (2015) Biological role of anti-aging protein Klotho, J. Lifestyle Med.5, 1-6, https://doi.org/10.15280/jlm.2015.5.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ying, K., Liu, H., Tarkhov, A. E., Sadler, M. C., Lu, A. T., Moqri, M., Horvath, S., Kutalik, Z., Shen, X., and Gladyshev, V. N. (2024) Causality-enriched epigenetic age uncouples damage and adaptation, Nat. Aging, https://doi.org/10.1038/s43587-023-00557-0.

    Article  PubMed  Google Scholar 

  56. Higgins-Chen, A. T., Thrush, K. L., Wang, Y., Minteer, C. J., Kuo, P.-L., Wang, M., Niimi, P., Sturm, G., Lin, J., Moore, A. Z., Bandinelli, S., Vinkers, C. H., Vermetten, E., Rutten, B. P. F., Geuze, E., Okhuijsen-Pfeifer, C., van der Horst, M. Z., Schreiter, S., Gutwinski, S., Luykx, J. J., Picard, M., Ferrucci, L., Crimmins, E. M., Boks, M. P., Hägg, S., Hu-Seliger, T. T., and Levine, M. E. (2022) A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking, Nat. Aging2, 644-661, https://doi.org/10.1038/s43587-022-00248-2.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mitteldorf, J. (2021) A New Approach to Methylation Clocks, in Aging Matters Blog, URL: https://joshmitteldorf.scienceblog.com/2021/09/06/a-new-approach-to-methylation-clocks/.

  58. Vavourakis, C. D., Herzog, C. M., and Widschwendter, M. (2023) Devising reliable and accurate epigenetic predictors: choosing the optimal computational solution, bioRxiv, https://doi.org/10.1101/2023.10.13.562187.

    Article  Google Scholar 

  59. Moore, R. Y. (2007) Suprachiasmatic nucleus in sleep–wake regulation, Sleep Med.8, 27-33, https://doi.org/10.1016/j.sleep.2007.10.003.

    Article  PubMed  Google Scholar 

  60. Evans, J. A. (2016) Collective timekeeping among cells of the master circadian clock, J. Endocrinol.230, R27-R49, https://doi.org/10.1530/joe-16-0054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kowalska, E., and Brown, S. A. (2007) Peripheral clocks: keeping up with the master clock, Cold Spring Harb. Symp. Quant. Biol.72, 301-305, https://doi.org/10.1101/sqb.2007.72.014.

    Article  CAS  PubMed  Google Scholar 

  62. Gu, C., Li, J., Zhou, J., Yang, H., and Rohling, J. (2021) Network structure of the master clock is important for its primary function, Front. Physiol.12, 678391, https://doi.org/10.3389/fphys.2021.678391.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aveleira, C. A., Botelho, M., and Cavadas, C. (2015) NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?, Autophagy11, 1431-1433, https://doi.org/10.1080/15548627.2015.1062202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Silva, A. P., Cavadas, C., and Grouzmann, E. (2002) Neuropeptide Y and its receptors as potential therapeutic drug targets, Clin. Chim. Acta326, 3-25, https://doi.org/10.1016/s0009-8981(02)00301-7.

    Article  CAS  PubMed  Google Scholar 

  65. Botelho, M., and Cavadas, C. (2015) Neuropeptide Y: an anti-aging player?, Trends Neurosci.38, 701-711, https://doi.org/10.1016/j.tins.2015.08.012.

    Article  CAS  PubMed  Google Scholar 

  66. Chiba, T., Tamashiro, Y., Park, D., Kusudo, T., Fujie, R., Komatsu, T., Kim, S. E., Park, S., Hayashi, H., Mori, R., Yamashita, H., Chung, H. Y., and Shimokawa, I. (2014) A key role for neuropeptide Y in lifespan extension and cancer suppression via dietary restriction, Sci. Rep.4, 4517, https://doi.org/10.1038/srep04517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bakos, J., Zatkova, M., Bacova, Z., and Ostatnikova, D. (2016) The role of hypothalamic neuropeptides in neurogenesis and neuritogenesis, Neural Plast.2016, 3276383, https://doi.org/10.1155/2016/3276383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., Li, B., Liu, G., and Cai, D. (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH, Nature497, 211-216, https://doi.org/10.1038/nature12143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C., and Cai, D. (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs, Nature548, 52-57, https://doi.org/10.1038/nature23282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hurd, M. W., and Ralph, M. R. (1998) The significance of circadian organization for longevity in the golden hamster, J. Biol. Rhythms13, 430-436, https://doi.org/10.1177/074873098129000255.

    Article  CAS  PubMed  Google Scholar 

  71. Leng, L., Yuan, Z., Su, X., Chen, Z., Yang, S., Chen, M., Zhuang, K., Lin, H., Sun, H., Li, H., Xue, M., Xu, J., Yan, J., Chen, Z., Yuan, T., and Zhang, J. (2023) Hypothalamic Menin regulates systemic aging and cognitive decline, PLoS Biol.21, e3002033, https://doi.org/10.1371/journal.pbio.3002033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Horvath, S., and Raj, K. (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing, Nat. Rev. Genet.19, 371-384, https://doi.org/10.1038/s41576-018-0004-3.

    Article  CAS  PubMed  Google Scholar 

  73. Horvath, S., Mah, V., Lu, A. T., Woo, J. S., Choi, O.-W., Jasinska, A. J., Riancho, J. A., Tung, S., Coles, N. S., Braun, J., Vinters, H. V., and Coles, L. S. (2015) The cerebellum ages slowly according to the epigenetic clock, Aging (Albany NY)7, 294-306, https://doi.org/10.18632/aging.100742.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, B., Qu, J., Zhang, W., Izpisua Belmonte, J. C., and Liu, G.-H. (2022) A stem cell aging framework, from mechanisms to interventions, Cell Rep.41, 111451, https://doi.org/10.1016/j.celrep.2022.111451.

    Article  CAS  PubMed  Google Scholar 

  75. West, H. R. (2003) Utilitarianism, hedonism, and desert: essays in moral philosophy, Int. Stud. Philos.35, 244-245, https://doi.org/10.5840/intstudphil200335482.

    Article  Google Scholar 

  76. Walford, R. L. (1969) The immunologic theory of aging, Immunol. Rev.2, 171-171, https://doi.org/10.1111/j.1600-065x.1969.tb00210.x.

    Article  Google Scholar 

  77. De Grey, A. D. N. J. (1999) The Mitochondrial Free Radical Theory of Aging, R.G. Landes Company, Austin, TX, 212 p.

  78. Barja, G. (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts, Antioxid. Redox Signal.19, 1420-1445, https://doi.org/10.1089/ars.2012.5148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Adams, D. S., Tseng, A.-S., and Levin, M. (2013) Light-activation of the Archaerhodopsin H+-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivoBiol. Open2, 306-313, https://doi.org/10.1242/bio.20133665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mathews, J., Kuchling, F., Baez-Nieto, D., Diberardinis, M., Pan, J. Q., and Levin, M. (2022) Ion channel drugs suppress cancer phenotype in NG108-15 and U87 cells: toward novel electroceuticals for glioblastoma, Cancers, 14, 1499, https://doi.org/10.3390/cancers14061499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pio-Lopez, L., and Levin, M. (2023) Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging, Drug Discov. Today, 28, 103585, https://doi.org/10.1016/j.drudis.2023.103585.

    Article  CAS  PubMed  Google Scholar 

  82. Grigorian Shamagian, L., Rogers, R. G., Luther, K., Angert, D., Echavez, A., Liu, W., Middleton, R., Antes, T., Valle, J., Fourier, M., Sanchez, L., Jaghatspanyan, E., Mariscal, J., Zhang, R., and Marbán, E. (2023) Rejuvenating effects of young extracellular vesicles in aged rats and in cellular models of human senescence, Sci. Rep.13, https://doi.org/10.1038/s41598-023-39370-5.

    Article  Google Scholar 

  83. Mitteldorf, J. (2023) News from Harold Katcher’s Lab, in Aging Matters Blog, URL: https://joshmitteldorf.scienceblog.com/2023/09/04/news-from-harold-katchers-lab/.

  84. Raposo, G., and Stahl, P. D. (2019) Extracellular vesicles: a new communication paradigm?, Nat. Rev. Mol. Cell Biol.20, 509-510, https://doi.org/10.1038/s41580-019-0158-7.

    Article  CAS  PubMed  Google Scholar 

  85. Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature433, 760-764, https://doi.org/10.1038/nature03260.

    Article  CAS  PubMed  Google Scholar 

  86. Katcher, H. L. (2013) Studies that shed new light on aging, Biochemistry (Moscow)78, 1061-1070, https://doi.org/10.1134/s0006297913090137.

    Article  CAS  PubMed  Google Scholar 

  87. Sharon, J. S., Deutsch, G. K., Tian, L., Richardson, K., Coburn, M., Gaudioso, J. L., Marcal, T., Solomon, E., Boumis, A., Bet, A., Mennes, M., van Oort, E., Beckmann, C. F., Braithwaite, S. P., Jackson, S., Nikolich, K., Stephens, D., Kerchner, G. A., and Wyss-Coray, T. (2019) Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial, JAMA Neurol.76, 35-40, https://doi.org/10.1001/jamaneurol.2018.3288.

    Article  Google Scholar 

  88. Castellano, J. M., Mosher, K. I., Abbey, R. J., McBride, A. A., James, M. L., Berdnik, D., Shen, J. C., Zou, B., Xie, X. S., Tingle, M., Hinkson, I. V., Angst, M. S., and Wyss-Coray, T. (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice, Nature544, 488-492, https://doi.org/10.1038/nature22067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mehdipour, M., Skinner, C., Wong, N., Lieb, M., Liu, C., Etienne, J., Kato, C., Kiprov, D., Conboy, M. J., and Conboy, I. M. (2020) Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin, Aging (Albany NY)12, 8790-8819, https://doi.org/10.18632/aging.103418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salonen, J. T., Tuomainen, T.-P., Salonen, R., Lakka, T. A., and Nyyssonen, K. (1998) donation of blood is associated with reduced risk of myocardial infarction: the Kuopio ischaemic heart disease risk factor study, Am. J. Epidemiol.148, 445-451, https://doi.org/10.1093/oxfordjournals.aje.a009669.

    Article  CAS  PubMed  Google Scholar 

  91. Boada, M., López, O. L., Olazarán, J., Núñez, L., Pfeffer, M., Paricio, M., Lorites, J., Piñol-Ripoll, G., Gámez, J. E., Anaya, F., Kiprov, D., Lima, J., Grifols, C., Torres, M., Costa, M., Bozzo, J., Szczepiorkowski, Z. M., Hendrix, S., and Páez, A. (2020) A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study, Alzheimers. Dement.16, 1412-1425, https://doi.org/10.1002/alz.12137.

    Article  PubMed  Google Scholar 

  92. Lehallier, B., Gate, D., Schaum, N., Nanasi, T., Lee, S. E., Yousef, H., Moran Losada, P., Berdnik, D., Keller, A., Verghese, J., Sathyan, S., Franceschi, C., Milman, S., Barzilai, N., and Wyss-Coray, T. (2019) Undulating changes in human plasma proteome profiles across the lifespan, Nat. Med.25, 1843-1850, https://doi.org/10.1038/s41591-019-0673-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out by the author with no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Mitteldorf.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitteldorf, J. Biological Clocks: Why We Need Them, Why We Cannot Trust Them, How They Might Be Improved. Biochemistry Moscow 89, 356–366 (2024). https://doi.org/10.1134/S0006297924020135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924020135

Keywords

Navigation