Skip to main content
Log in

A magnetic nanozyme platform for bacterial colorimetric detection and chemodynamic/photothermal synergistic antibacterial therapy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Rapid, convenient, and sensitive detection of bacteria and development of novel antibacterial materials are conducive to accurate treatment of bacterial infection and reducing the generation of drug-resistant bacteria caused by overuse of antibiotics. A dual-function magnetic nanozyme, Fc-MBL@rGO@Fe3O4, has been constructed with broad-spectrum bacterial affinity and good peroxidase-like activity. Detection signal amplification was realized in the presence of 3,3’,5,5’-tetramethylbenzidine (TMB) with a detection limit of 26 CFU/mL. In addition, the excellent photothermal properties of Fc-MBL@rGO@Fe3O4 could realize synergistic chemodynamic/photothermal antibacterial therapy. Furthermore, the good bacterial affinity of Fc-MBL@rGO@Fe3O4 enhances the accurate and rapid attack of hydroxyl radical (·OH) on the bacterial membrane and achieves efficient sterilization (100%) at low concentration (40 µg/mL) and mild temperature (47℃). Notably, Fc-MBL@rGO@Fe3O4 has a broad spectrum of antibacterial activity against Gram-negative, Gram-positive, and drug-resistant bacteria. The magnetic nanoplatform integrating detection-sterilization not only meets the need for highly sensitive and accurate detection in different scenarios, but can realize low power density NIR-II light-responsive chemodynamic/photothermal antibacterial therapy, which has broad application prospects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271

    CAS  Google Scholar 

  2. Tang WH, Ranganathan N, Shahrezaei V, Larrouy-Maumus G (2019) MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS ONE 14(6):e0218951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerremans JJ, Verboom P, Stijnen T, Roijen LHV, Goessens W, Verbrugh HA, Vos MC (2008) Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemoth 61(2):428–435

    Article  CAS  Google Scholar 

  4. Altun O, Botero-Kleiven S, Carlsson S, Ullberg M, Ozenci V (2015) Rapid identification of bacteria from positive blood culture bottles by MALDI-TOF MS following short-term incubation on solid media. J Med Microbiol 64:1346–1352

    Article  CAS  PubMed  Google Scholar 

  5. Loesche WJ, Lopatin DE, Stoll J, Vanpoperin N, Hujoel PP (1992) Comparison of various detection methods for periodontopathic bacteria - can culture be considered the primary reference-standard. J Clin Microbiol 30(2):418–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Zhang YL, Lin YK, Liang TW, Chen ZH, Li JF, Yue ZF, Lv JZ, Jiang Q, Yi CQ (2015) Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes. Biosens Bioelectron 71:186–193

    Article  CAS  PubMed  Google Scholar 

  7. Wang YL, Li QY, Zhang R, Tang KQ, Ding CF, Yu SN (2020) SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe. Microchim Acta 187(5):209

    Article  Google Scholar 

  8. Shi HM, Sun JJ, Han RR, Ding CF, Hu FP, Yu SN (2020) The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing. Talanta 208:120347

    Article  CAS  PubMed  Google Scholar 

  9. Muhamadali H, Subaihi A, Mohammadtaheri M, Xu Y, Ellis DI, Ramanathan R, Bansal V, Goodacre R (2016) Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 141(17):5127–5136

    Article  CAS  PubMed  Google Scholar 

  10. Das R, Dhiman A, Kapil A, Bansal V, Sharma TK (2019) Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold Nanozyme. Anal Bioanal Chem 411(6):1229–1238

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Wang LJ, Du D, Ni L, Pan JM, Niu XH (2019) Emerging applications of nanozymes in environmental analysis: opportunities and trends. Trac-Trend Anal Chem 120:115653

    Article  CAS  Google Scholar 

  12. Azevedo AM, Martins VC, Prazeres DM, Vojinovic V, Cabral JM, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247

    Article  CAS  PubMed  Google Scholar 

  13. van Beilen JB, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotech 13(4):338–344

    Article  PubMed  Google Scholar 

  14. Chen ZW, Wang ZZ, Ren JS, Qu XG (2018) Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res 51(3):789–799

    Article  CAS  PubMed  Google Scholar 

  15. Lyu Z, Zhou J, Ding S, Du D, Wang J, Liu Y, Lin Y (2023) Recent advances in single-atom nanozymes for colorimetric biosensing. Trac-Trend Anal Chem 168:117280

    Article  CAS  Google Scholar 

  16. Kuah E, Toh S, Yee J, Ma Q, Gao ZQ (2016) Enzyme mimics: advances and applications. Chem-Eur J 22(25):8404–8430

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Zhu HJ, Liu P, Wang MZ, Pan JM, Qiu FX, Ni L, Ni XH (2021) Realizing selective detection with nanozymes: strategies and trends. Trac-Trend Anal Chem 143:116379

    Article  CAS  Google Scholar 

  18. Feng YY, Qin J, Zhou Y, Yue Q, Wei J (2022) Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J Colloid Interf Sci 606:826–836

    Article  CAS  Google Scholar 

  19. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao YJAN (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10:11000–11011

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Sun XY, Bu T, Wang QZ, Zhang H, Jia P, Li LW, Wang L (2021) Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds. Acta Biomater 135:342–355

    Article  CAS  PubMed  Google Scholar 

  21. Zhu YW, Xu C, Zhang N, Ding XK, Yu BR, Xu FJ (2018) Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy. Adv Funct Mater 28(14):1706709

    Article  Google Scholar 

  22. Yang Y, Deng YY, Huang JB, Fan X, Cheng C, Nie CX, Ma L, Zhao WF, Zhao CS (2019) Size-transformable Metal-Organic Framework-derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection. Adv Funct Mater 29(33):1900143

    Article  Google Scholar 

  23. Jeong CJ, Sharker SM, In I, Park SY (2015) Iron oxide@PEDOT-based recyclable photothermal nanoparticles with poly(vinylpyrrolidone) sulfobetaines for rapid and effective antibacterial activity. ACS Appl Mater Interfaces 7(18):9469–9478

    Article  CAS  PubMed  Google Scholar 

  24. Chen LF, Xing SH, Lei YL, Chen QS, Zou Z, Quan K, Qing ZH, Liu JW, Yang RH (2021) A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew Chem Int Ed 60(44):23534–23539

    Article  CAS  Google Scholar 

  25. Deng JQ, Xu JY, Ouyang MZ, Zou Z, Lei YL, Li JB, Qing ZH, Yang RH (2022) Target-triggered hairpin-free chain-branching growth of DNA dendrimers for contrast-enhanced imaging in living cells by avoiding signal dispersion. Chin Chem Lett 33:773–777

    Article  CAS  Google Scholar 

  26. Yingnan Z, Yaqing X, Zhang, Yalan, Tong, Taotao W (2019) Multifunctional magnetic copper ferrite nanoparticles as fenton-like reaction and near-infrared photothermal agents for synergetic antibacterial therapy. ACS Appl Mater Interfaces 11:31649–31660

    Article  Google Scholar 

  27. Wu HH, Cheng KM, He Y, Li ZY, Su HL, Zhang XM, Sun YA, Shi W, Ge DT (2019) Fe3O4-based multifunctional nanospheres for amplified magnetic targeting photothermal therapy and fenton reaction. Acs Biomater Sci Eng 5(2):1045–1056

    Article  CAS  PubMed  Google Scholar 

  28. Gao Q, Zhang X, Yin WY, Ma DQ, Xie CJ, Zheng LR, Dong XH, Mei LQ, Yu J, Wang CZ, Gu ZJ, Zhao YL (2018) Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 14(45):1802290

    Article  Google Scholar 

  29. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  30. Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7(11):3132–3138

    Article  CAS  PubMed  Google Scholar 

  31. Morales-Narvaez E, Merkoci A (2019) Graphene oxide as an optical biosensing platform: a progress report. Adv Mater 31(6):1805043

    Article  Google Scholar 

  32. Ghosal K, Sarkar K (2018) Biomedical applications of graphene nanomaterials and beyond. ACS Biomater Sci Eng 4(8):2653–2703

    Article  CAS  PubMed  Google Scholar 

  33. Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68(2):688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue YH, Chen H, Yu DS, Wang SY, Yardeni M, Dai QB, Guo MM, Liu Y, Lu F, Qu J, Dai LM (2011) Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem Commun 47(42):11689–11691

    Article  CAS  Google Scholar 

  35. Yu MH, Zhang L, Qian GQ, Shi HM, Yu SN (2022) Fc-MBL-modified Fe3O4 magnetic bead enrichment and fixation in Gram strain for rapid detection of low-concentration bacteria. Microchim Acta 189:169

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Plan of China (2018YFF0212501) and National Natural Science Foundation of China (31470786).

Author information

Authors and Affiliations

Authors

Contributions

Yuyan Xue: Conceptualization, Methodology, Data curation, Writing - original draft preparation. Qiaoyu Li: Software, Formal analysis. Yanlin Wang: Formal analysis. Hao Shen: Visualization, Reviewing, Validation, Supervision. Shaoning Yu: Editing, Supervision.

Corresponding authors

Correspondence to Hao Shen or Shaoning Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Li, Q., Wang, Y. et al. A magnetic nanozyme platform for bacterial colorimetric detection and chemodynamic/photothermal synergistic antibacterial therapy. Microchim Acta 191, 214 (2024). https://doi.org/10.1007/s00604-024-06270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06270-y

Keywords

Navigation