Skip to main content

Advertisement

Log in

MiR-135a-5p regulates window of implantation by suppressing pinopodes development and decidualization of endometrial stromal cells

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The window of implantation (WOI) is a brief period during which the endometrium is receptive to embryo implantation. This study investigated the relationship between miR-135a-5p and endometrial receptivity.

Methods

Peripheral blood was collected on the day of ovulation and the 5th day after ovulation for high-throughput sequencing from women who achieved clinical pregnancy through natural cycle frozen embryo transfer. RT-qPCR assessed miR-135a-5p expression in the endometrium tissue or cells during the mouse implantation window or decidualization. Scanning electron microscopy was utilized to observe pinopode morphology and quantity in mice overexpressing miR-135a-5p during the WOI. Human endometrial stromal cells (HESC) and artificial induction of mouse uterine decidualization were used to explore whether miR-135a-5p overexpression inhibits decidualization by regulating HOXA10 and BMPR2. Furthermore, the impact of miR-135a-5p on HESC proliferation and HTR8/SVneo invasion was explored.

Results

A total of 54 women were enrolled in the study. bioinformatics analysis and animal models demonstrated that miR-135a-5p was significantly downregulated during the WOI, and its high expression can lead to abnormal pregnancy outcomes. Overexpression of miR-135a-5p resulted in the absence of pinopode in mouse endometrial tissue during the WOI. High miR-135a-5p levels were found to potentially inhibit endometrial tissue decidualization by downregulating HOXA10 and BMPR2 expression. Finally, CEBPD was identified as a potential regulator of miR-135a-5p, which would explain the decreased miR-135a-5p expression during the WOI.

Conclusion

MiR-135a-5p expression is significantly downregulated during the WOI. High miR-135a-5p levels suppress pinopode development and endometrial tissue decidualization through HOXA10 and BMPR2, contributing to inadequate endometrial receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data generated in this study are provided in the Supplement or are available from the corresponding author.

Abbreviations

ANOVA:

Analysis of variance

ART:

Assisted reproduction technology

BMPR2:

Bone morphogenetic protein receptor 2

c-AMP:

8-Bromo-cAMP sodium salt

CEBPD:

CCAAT/enhancer-binding protein delta

CS-FBS:

Charcoal-stripped fetal bovine serum

CCK-8:

Cell counting kit-8

DAB:

3,3’-diaminobenzidene tetrahydrochloride

DE:

different expression

DMEM/F12:

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12

dpc:

days post coitus

Dtprp:

decidual/trophoblast prolactin-related protein

E 0.5:

embryonic day 0.5

EDTA:

ethylenediaminetetraacetic acid

EECs:

endometrial epithelial cells

ESCs:

endometrial stromal cells

FET:

frozen embryo transfer

GEO:

Gene Expression Omnibus

HBBS:

hanks balanced salt solution

HE:

hematoxylin-eosin

HEK-293T:

human embryonic kidney cells

HESCs:

human endometrial stromal cells

HOXA10:

(homeobox A10)

IGFBP1:

insulin like growth factor binding protein 1

ITS:

insulin-transferrin-selenium solution

LH:

luteinizing hormone

miRNA:

microRNA

MPA:

Medroxyprogesterone 17-acetate

NGS:

Next Generation Sequencing

PBS:

phosphate buffered saline

pre-WOI:

previous WOI

pHESCs:

human primary endometrial stromal cells

PRL:

prolactin

RIF:

repeated implantation failures

RPMI:

Roswell Park Memorial Institute

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEM:

scanning electron microscopy

Si:

small interfering

WOI:

window of implantation

3’-UTR:

3’ untranslated region

References

  1. Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A. 2003;100:2963–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Craciunas L, Gallos I, Chu J. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. HUM REPROD UPDATE. 2019;25:202–23.

    Article  CAS  PubMed  Google Scholar 

  3. Makker A, Singh MM. Endometrial receptivity: clinical assessment in relation to fertility, infertility, and antifertility. MED RES REV. 2006;26:699–746.

    Article  CAS  PubMed  Google Scholar 

  4. Ruiz-Alonso M, Valbuena D, Gomez C, Cuzzi J. C. Simon. Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open. 2021. 2021: hoab11.

  5. Enciso M, Aizpurua J. Rodríguez-Estrada. The precise determination of the window of implantation significantly improves ART outcomes. SCI REP-UK. 2021;11:13420.

    Article  ADS  CAS  Google Scholar 

  6. Lessey BA, Young SL. What exactly is endometrial receptivity? FERTIL STERIL. 2019;111:611–7.

    Article  PubMed  Google Scholar 

  7. Sato T, Sugiura-Ogasawara M, Ozawa F. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. HUM REPROD. 2019;34:2340–8.

    Article  PubMed  Google Scholar 

  8. Chang J, Boulet SL, Jeng G, Flowers L, Kissin DM. Outcomes of in vitro fertilization with preimplantation genetic diagnosis: an analysis of the United States assisted Reproductive Technology Surveillance Data, 2011–2012. FERTIL STERIL. 2016;105:394–400.

    Article  PubMed  Google Scholar 

  9. Hatirnaz S, Ozer A, Hatirnaz E. Pre-implantation genetic screening among women experiencing recurrent failure of in vitro fertilization. Int J Gynaecol Obstet. 2017;137:314–8.

    Article  PubMed  Google Scholar 

  10. Nikas G. Endometrial receptivity: changes in cell-surface morphology. SEMIN REPROD MED. 2000;18:229–35.

    Article  CAS  PubMed  Google Scholar 

  11. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice. HUM REPROD. 1999;14(Suppl 2):99–106.

    Article  PubMed  Google Scholar 

  12. Murata H, Tanaka S, Tsuzuki-Nakao T. The transcription factor HAND2 up-regulates transcription of the IL15 gene in human endometrial stromal cells. J BIOL CHEM. 2020;295:9596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Irwin JC, Utian WH, Eckert RL. Sex steroids and growth factors differentially regulate the growth and differentiation of cultured human endometrial stromal cells. Endocrinology. 1991;129:2385–92.

    Article  CAS  PubMed  Google Scholar 

  14. Sawai K, Matsuzaki N, Okada T. Human decidual cell biosynthesis of leukemia inhibitory factor: regulation by decidual cytokines and steroid hormones. BIOL REPROD. 1997;56:1274–80.

    Article  CAS  PubMed  Google Scholar 

  15. Carter A.M., Hills F, O’Gorman DB. The insulin-like growth factor system in mammalian pregnancy–a workshop report. Placenta. 2004;25(Suppl A):S53–6.

  16. Zelenko Z, Aghajanova L, Irwin JC, Giudice LC. Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. REPROD SCI. 2012;19:152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. MOL HUM REPROD. 2010;16:297–310.

    Article  CAS  PubMed  Google Scholar 

  18. Grimaldi G, Christian M, Quenby S, Brosens JJ. Expression of epigenetic effectors in decidualizing human endometrial stromal cells. MOL HUM REPROD. 2012;18:451–8.

    Article  CAS  PubMed  Google Scholar 

  19. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. HUM REPROD UPDATE. 2011;17:397–417.

    Article  CAS  PubMed  Google Scholar 

  20. McCallie B, Schoolcraft WB, Katz-Jaffe MG. Aberration of blastocyst microRNA expression is associated with human infertility. FERTIL STERIL. 2010;93:2374–82.

    Article  CAS  PubMed  Google Scholar 

  21. Revel A, Achache H, Stevens J, Smith Y. Reich. MicroRNAs are associated with human embryo implantation defects. HUM REPROD. 2011;26:2830–40.

    Article  CAS  PubMed  Google Scholar 

  22. Goharitaban S, Abedelahi A, Hamdi K. Role of endometrial microRNAs in repeated implantation failure (mini-review). Front Cell Dev Biol. 2022;10:936173.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shekibi M, Heng S, Nie G. MicroRNAs in the regulation of Endometrial receptivity for embryo implantation. INT J MOL SCI. 2022. 23.

  24. Ruiz-Alonso M, Blesa D, Diaz-Gimeno P. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. FERTIL STERIL. 2013;100:818–24.

    Article  PubMed  Google Scholar 

  25. Mahajan N. Endometrial receptivity array: clinical application. J Hum Reprod Sci. 2015;8:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto T, Koizumi M, Doshida M. Efficacy of the endometrial receptivity array for repeated implantation failure in Japan: a retrospective, two-centers study. Reprod Med Biol. 2017;16:290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Creinin MD, Keverline S, Meyn LA. How regular is regular? An analysis of menstrual cycle regularity. CONTRACEPTION. 2004;70:289–92.

    Article  PubMed  Google Scholar 

  28. Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: a New Tool for Accurate cutting of primers from reads of targeted next generation sequencing. J COMPUT BIOL. 2017;24:1138–43.

    Article  CAS  PubMed  Google Scholar 

  29. Nawrocki EP, Burge SW, Bateman A. Rfam 12.0: updates to the RNA families database. NUCLEIC ACIDS RES. 2015;43:D130–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. NUCLEIC ACIDS RES. 2014;42:D68–73.

    Article  CAS  PubMed  Google Scholar 

  31. Tong Z, Cui Q, Wang J, Zhou Y. TransmiR v2.0: an updated transcription factor-microRNA regulation database. NUCLEIC ACIDS RES. 2019;47:D253–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang Y, Li J, Li G. Osteoprotegerin interacts with syndecan-1 to promote human endometrial stromal decidualization by decreasing akt phosphorylation. HUM REPROD. 2020;35:2439–53.

    Article  CAS  PubMed  Google Scholar 

  33. Liao Y, Jiang Y, He H. NEDD8-mediated neddylation is required for human endometrial stromal proliferation and decidualization. HUM REPROD. 2015;30:1665–76.

    Article  CAS  PubMed  Google Scholar 

  34. Tan Y, Li M, Cox S. HB-EGF directs stromal cell polyploidy and decidualization via cyclin D3 during implantation. DEV BIOL. 2004;265:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma L, Zhang M, Cao F. Effect of MiR-100-5p on proliferation and apoptosis of goat endometrial stromal cell in vitro and embryo implantation in vivo. J CELL MOL MED. 2022;26:2543–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong J, Wang L, Xing Y. Dynamic peripheral blood microRNA expression landscape during the peri-implantation stage in women with successful pregnancy achieved by single frozen-thawed blastocyst transfer. Hum Reprod Open. 2023. 2023: hoad34.

  37. Zheng K, Hu F, Zhou Y. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. NAT COMMUN. 2021;12:1903.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Ye C, Tong Y, Wu N. Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. ACTA PHARMACOL SIN. 2021;42:1798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun H, Meng Q, Shi C. Hypoxia-Inducible Exosomes facilitate Liver-Tropic Premetastatic Niche in Colorectal Cancer. Hepatology. 2021;74:2633–51.

    Article  CAS  PubMed  Google Scholar 

  40. Lu Y, Zhang X, Li X. MiR-135a-5p suppresses trophoblast proliferative, migratory, invasive, and angiogenic activity in the context of unexplained spontaneous abortion. Reprod Biol Endocrinol. 2022;20:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nikas G. Cell-surface morphological events relevant to human implantation. HUM REPROD. 1999;14(Suppl 2):37–44.

    Article  PubMed  Google Scholar 

  42. Rarani FZ, Borhani F, Rashidi B. Endometrial pinopode biomarkers: molecules and microRNAs. J CELL PHYSIOL. 2018;233:9145–58.

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Zhang M, Zhang Y, Liu T, Qu X. GnRH analogues may increase endometrial Hoxa10 promoter methylation and affect endometrial receptivity. MOL MED REP. 2015;11:509–14.

    Article  CAS  PubMed  Google Scholar 

  44. Bi Y, Huang W, Yuan L. HOXA10 improves endometrial receptivity by upregulating E-cadherindagger. BIOL REPROD. 2022;106:992–9.

    Article  PubMed  Google Scholar 

  45. Lu Z, Hardt J, Kim JJ. Global analysis of genes regulated by HOXA10 in decidualization reveals a role in cell proliferation. MOL HUM REPROD. 2008;14:357–66.

    Article  CAS  PubMed  Google Scholar 

  46. Kim JJ, Fazleabas AT. Uterine receptivity and implantation: the regulation and action of insulin-like growth factor binding protein-1 (IGFBP-1), HOXA10 and forkhead transcription factor-1 (FOXO-1) in the baboon endometrium. Reprod Biol Endocrinol. 2004;2:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riyanti A, Febri RR, Zakirah SC. Suppressing HOXA-10 gene expression by MicroRNA 135b during the window of implantation in Infertile Women. J Reprod Infertil. 2020;21:217–21.

    PubMed  PubMed Central  Google Scholar 

  48. Lee KY, Jeong JW, Wang J. Bmp2 is critical for the murine uterine decidual response. MOL CELL BIOL. 2007;27:5468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagashima T, Li Q, Clementi C. BMPR2 is required for postimplantation uterine function and pregnancy maintenance. J CLIN INVEST. 2013;123:2539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Wang M, Lang Z. MiR-135a-5p suppresses breast cancer cell proliferation, migration, and invasion by regulating BAG3. Clin (Sao Paulo). 2022;77:100115.

    Article  Google Scholar 

  51. Diao H, Xu X, Zhao B, Yang G. miR–135a–5p inhibits tumor invasion by targeting ANGPT2 in gallbladder cancer. MOL MED REP. 2021. 24.

  52. Lin X, Yang Y, Ji Y. MiR-135a-5p/SP1 Axis regulates spinal astrocyte proliferation and Migration. Neuroscience. 2023;515:12–24.

    Article  CAS  PubMed  Google Scholar 

  53. Wu D, Shi L, Hong L, Chen X, Cen H. MiR-135a-5p promotes the migration and invasion of trophoblast cells in preeclampsia by targeting beta-TrCP. Placenta. 2020;99:63–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ko CY, Chu YY, Narumiya S. CCAAT/enhancer-binding protein delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in Alzheimer’s disease. NEUROBIOL AGING. 2015;36:1356–68.

    Article  CAS  PubMed  Google Scholar 

  55. Chu YY, Ko CY, Wang WJ. Astrocytic CCAAT/Enhancer binding protein delta regulates neuronal viability and spatial learning ability via miR-135a. MOL NEUROBIOL. 2016;53:4173–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients participated in the included studies and all researchers.

Funding

This study was supported by Major Clinical Research Projects of the Second Affiliated Hospital, Air Force Medical University (2021LCYJ004).

Author information

Authors and Affiliations

Authors

Contributions

XHW and SQC conceived and designed the study. YNH, HL, JL, and NJ performed the experiments, analyzed the data. YNH, YJ, and SQC wrote the manuscript. SQC, JD and XHW contributed to the writing of final version of the manuscript. All authors agreed and reviewed the final version of the manuscript.

Corresponding authors

Correspondence to Shuqiang Chen or Xiaohong Wang.

Ethics declarations

Ethics approval and consent to participate

This study received approval from Institutional Review Board, Medical Ethics Committee of the Second Affiliated Hospital, Air Force Medical University (TDLL-202311-19), and all patients provided informed consent. Animal experiments were approved by the Experimental Animal Welfare and Ethics Committee of Air Force Medical University (IACUC-20221130).

Consent for publication

All authors agreed to publish the manuscript. What we have done is not involved in previous studies. This manuscript will not be published elsewhere.

Conflict of interest

The authors declare that they have no competing interests.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ju, Y., Lei, H. et al. MiR-135a-5p regulates window of implantation by suppressing pinopodes development and decidualization of endometrial stromal cells. J Assist Reprod Genet (2024). https://doi.org/10.1007/s10815-024-03088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10815-024-03088-8

Keywords

Navigation