Skip to main content
Log in

Mass Spectrometric Thermodynamic Study of the Fe2O3–TiO2 System

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

High-temperature differential mass spectrometry was used to study the vaporization processes and thermodynamic properties of samples of the Fe2O3–TiO2 system containing 25, 35, and 45 mol. % iron oxide. As shown earlier, at temperatures above 1400 K, Fe2O3, losing oxygen, turns into FeO. Therefore, in this article, a mass spectrometric thermodynamic study of the FeO–TiO2 system was carried out at a temperature of 1760 K. The composition and partial pressures of vapor, as well as the values of FeO activities and excess Gibbs energy in the FeO–TiO2 system were determined. Using the Wilson polynomial made it possible for the first time to estimate the mixing enthalpy and excess entropy in the FeO–TiO2 system at 1760 K. The thermodynamic properties of melts of the FeO–TiO2 system at 1760 K were modeled using the generalized lattice theory of associated solutions, and the relative numbers of bonds of various types in the model melt lattice were calculated, indicating the preferential formation of Fe–O–Ti bonds at a FeO content of 55 mol %. It is shown that at a temperature of 1760 K, the found values of the excess Gibbs energy in the FeO–TiO2 system are evidence of negative deviations from the ideality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Fujishima, A., Rao, T.N., and Tryk, D.A., J. Photochem. Photobiol., C, 2000, vol. 1, no. 1, p. 1.

    Article  Google Scholar 

  2. Mahmoodi, A., Ghoranneviss, M., and Asgary, S., High Temp., 2019, vol. 57, no. 2, p. 289.

    Article  Google Scholar 

  3. Mersal, M., Zedan, A.F., Mohamed, G.G., and Hassan, G.K., Sci. Rep., 2023, vol. 13, no. 1, p. 4431.

    Article  ADS  Google Scholar 

  4. Gorbunova, V.A. and Sliapniova, L.M., Sci. Technol., 2018, vol. 17, no. 6, p. 521.

    Google Scholar 

  5. Wilke, K. and Breuer, H.D., J. Photochem. Photobiol., A, 1999, vol. 121, no. 1, p. 49.

    Article  Google Scholar 

  6. Sun, L., Li, J., Wang, C.L., Li, S.F., Chen, H.B., and Lin, C.J., Sol. Energy Mater. Sol. Cells, 2009, vol. 93, no. 10, p. 1875.

    Article  Google Scholar 

  7. Kazenas, E.K. and Tsvetkov, Yu.V., Termodinamika ispareniya oksidov (Thermodynamics of Oxide Evaporation), Moscow: LKI, 2008.

  8. Lopatin, S.I., Zvereva, I.A., and Chislova, I.V., Russ. J. Gen. Chem., 2020, vol. 90, no. 8, p. 1495.

    Article  Google Scholar 

  9. Gilles, P.W., Carlson, K.D., Franzen, H.F., and Wahlbeck, P.G., J. Chem. Phys., 1967, vol. 46, no. 7, p. 2461.

    Article  ADS  Google Scholar 

  10. Gilles, P.W., Franzen, H.F., Duane, StoneG., and Wahlbeck, P.G., J. Chem. Phys., 1968, vol. 48, no. 5, p. 1938.

    Article  ADS  Google Scholar 

  11. Hampson, P.J. and Gilles, P.W., J. Chem. Phys., 1971, vol. 55, no. 8, p. 3708.

    Article  ADS  Google Scholar 

  12. Semenov, G.A., Lopatin, S.I., and Kuligina, L.A., Vestn. St. Peterb. Gos. Univ., Ser. 4: Fiz., Khim., 1994, vol. 1, no. 4, p. 46.

    Google Scholar 

  13. Ban-ya, S., Chiba, A., and Hikosaka, A., Tetsu Hagane, 1980, vol. 66, no. 10, p. 1484.

    Article  Google Scholar 

  14. Eriksson, G. and Pelton, A.D., Metall. Trans. B, 1993, vol. 24, no. 5, p. 795.

    Article  Google Scholar 

  15. Stolyarova, V.L. and Semenov, G.A., in Mass Spectrometric Study of the Vaporization of Oxide Systems, Beynon, J.H., Ed., Chichester: Wiley, 1994.

    Google Scholar 

  16. Pesl, J. and Hurman, E.R., Metall. Mater. Trans. B, 1999, vol. 30, no. 4, p. 695

    Article  Google Scholar 

  17. Sheindlin, M., Frolov, A., Petukhov, S., Bottomley, D., Masaki, K., Manara, D., and Costa, D., J. Am. Ceram. Soc., 2022, vol. 105, no. 3, p. 2161.

    Article  Google Scholar 

  18. Hilpert, K., Rapid Commun. Mass Spectrom., 1991, vol. 5, no. 4, p. 175.

    Article  ADS  Google Scholar 

  19. Drowart, J., Chatillon, C., Hastie, J., and Bonnell, D., Pure Appl. Chem., 2005, vol. 77, no. 4, p. 683.

    Article  Google Scholar 

  20. Lopatin, S.I., Shugurov, S.M., Tyurnina, Z.G., and Tyurnina, N.G., Glass Phys. Chem., 2021, vol. 47, no. 1, p. 38.

    Article  Google Scholar 

  21. Lopatin, S.I., Glass Phys. Chem., 2022, vol. 48, no. 2, p. 117.

    Article  Google Scholar 

  22. Gurvich, L.V., Veits, I.V., Medvedev, V.A., Bergman, G.A., Yungman, V.S., Khachkuruzov, G.A., Iorish, V.S., Dorofeeva, O.V., and Osina, E.L., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnik (Thermodynamic Properties of Individual Substances: Handbook), Glushko, V.P., Ed., Moscow: Nauka, 1982, vol. 4, part 2.

    Google Scholar 

  23. Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R.D., and Mallard, W.G., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 1 (suppl.), p. 861.

    Google Scholar 

  24. Paule, R.C. and Mandel, J., Pure Appl. Chem., 1972, vol. 31, no. 3, p. 395.

    Article  Google Scholar 

  25. Mann, J.B., J. Chem. Phys., 1967, vol. 46, no. 5, p. 1646.

    Article  ADS  Google Scholar 

  26. Zeifert, P.L., in High Temperature Technology, Kempbell, I.E., Ed., New York: Wiley, 1956, p. 485.

    Google Scholar 

  27. Sidorov, L.N. and Akishin, P.A., Dokl. Akad. Nauk SSSR, 1963, vol. 151, no. 1, p. 136.

    Google Scholar 

  28. Sidorov, L.N. and Shol’ts, V.B., Int. J. Mass Spectrom. Ion Phys., 1972, vol. 8, no. 5, p. 437.

    Article  ADS  Google Scholar 

  29. Muan, A., Am. Mineral., 1961, vol. 46, nos. 5–6, p. 572.

    Google Scholar 

  30. Redlich, O. and Kister, A.T., Ind. Eng. Chem., 1948, vol. 40, no. 2, p. 345.

    Article  Google Scholar 

  31. Orye, R.V. and Prausnitz, J.M., Ind. Eng. Chem., 1965, vol. 57, no. 5, p. 18.

    Article  Google Scholar 

  32. Stolyarova, V.L. and Vorozhtcov, V.A., Russ. J. Inorg. Chem., 2021, vol. 66, no. 9, p. 1396.

    Article  Google Scholar 

  33. Vorozhtcov, V.A., Stolyarova, V.L., Kirillova, S.A., and Lopatin, S.I., Russ. J. Inorg. Chem., 2023, vol. 68, no. 2, p. 172.

    Article  Google Scholar 

  34. Wilson, G.M., J. Am. Chem. Soc., 1964, vol. 86, no. 2, p. 127.

    Article  Google Scholar 

  35. Hildebrand, J.H., J. Am. Chem. Soc., 1929, vol. 51, no. 1, p. 66.

    Article  Google Scholar 

  36. Hildebrand, J.H., Nature, 1951, vol. 168, no. 4281, p. 868.

    Article  ADS  Google Scholar 

  37. Durov, V.A. and Ageev, E.P., Termodinamicheskaya teoriya rastvorov (Thermodynamic Theory of Solutions), Krestov, G.A. and Poltorak, O.M., Eds., Moscow: Librokom, 2010.

    Google Scholar 

  38. Hardy, H.K., Acta Metall., 1953, vol. 1, no. 2, p. 202.

    Article  Google Scholar 

  39. Vorozhtcov, V.A., Stolyarova, V.L., Shilov, A.L., Lopatin, S.I., Shugurov, S.M., and Karachevtsev, F.N., J. Phys. Chem. Solids, 2021, vol. 156, p. 110156.

    Article  Google Scholar 

  40. Barker, J.A., J. Chem. Phys., 1952, vol. 20, no. 10, p. 1526.

    Article  ADS  Google Scholar 

  41. Shilov, A.L., Stolyarova, V.L., Vorozhtcov, V.A., and Lopatin, S.I., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2019, vol. 65, p. 165.

    Article  Google Scholar 

  42. Stolyarova, V.L., Vorozhtcov, V.A., Lopatin, S.I., Selyutin, A.A., Shugurov, S.M., Shilov, A.L., Stolyarov, V.A., and Almjashev, V.I., Rapid Commun. Mass Spectrom., 2023, vol. 37, no. 5, p. e9459

    Article  Google Scholar 

  43. Stolyarova, V.L., Vorozhtcov, V.A., Shemchuk, D.V., Shilov, A.L., Lopatin, S.I., Almjashev, V.I., Shuvaeva, E.B., and Kirillova, S.A., Rapid Commun. Mass Spectrom., 2022, vol. 36, no. 19, p. e9359.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the St. Petersburg State University Research Park: the phase composition of the samples was studied at the Research Centre for X-ray Diffraction Studies; X-ray fluorescence analysis was performed in the Chemical Analysis and Materials Research Centre; the surfaces of the samples were studied at the Centre for Geo-Environmental Research and Modelling (GEOMODEL); the liquid nitrogen required for operation of the mass spectrometer was supplied by the Cryogenic Department of the St. Petersburg State University Research Park.

Funding

The study was supported by the Russian Science Foundation (grant no. 23-13-00254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vorozhtcov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A. et al. Mass Spectrometric Thermodynamic Study of the Fe2O3–TiO2 System. High Temp 61, 790–800 (2023). https://doi.org/10.1134/S0018151X23060111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23060111

Navigation