Skip to main content
Log in

New Correlation Model of Thermal Conductivity of Liquid Hydrofluorochloro Derivatives of Olefins, Hydrofluorocarbons, and Hydrochlorofluorocarbons

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The correlation dependence of thermal conductivity \({{\lambda }_{{\text{s}}}}\) of liquid refrigerants on the saturation line is developed as a simple function of temperature \(T\): \({{\lambda }_{{\text{s}}}}{\text{/}}{{\lambda }_{0}} = {{(1 + \tau )}^{2}} + A{{\tau }^{{ - \chi }}}\) (where \({{\lambda }_{0}}\) is the criterion unit, \(\tau = 1 - T{\text{/}}{{T}_{{\text{c}}}}\), and \({{T}_{{\text{c}}}}\) is the critical temperature). This dependence satisfies the requirements of dynamic scale theory (ST), and in particular, the passage to the limit \({{\lambda }_{{\text{s}}}}(T \to {{T}_{{\text{c}}}}) \to + \infty \). The proposed correlation dependence is tested using the example of describing the thermal conductivity of 17 liquid substances in the range of state parameters from the saturation line to the critical pressure \({{p}_{{\text{c}}}}\) and in the temperature range from the triple point temperature Ttr to \({{T}_{{\text{c}}}}\). The substances reviewed include nine fourth-generation refrigerants of hydrofluorochloro derivatives of olefins, seven hydrochlorofluorocarbons and hydrofluorocarbons, and C3H8. Using the description of \({{\lambda }_{{\text{s}}}}\) of C3H8 as an example, it is shown that the proposed correlation dependence not only qualitatively but also quantitatively accurately conveys the behavior of \({{\lambda }_{{\text{s}}}}\) in the vicinity of the critical point. Based on the statistical analysis, it is shown that the proposed correlation with significantly less uncertainty describes the data on the thermal conductivity of liquid hydrofluorochloro derivatives of olefins both on the saturation line and in the single-phase region. Based on the proposed methodology, the thermal conductivity of the cis-isomer R1225ye(Z) is calculated for the first time in the temperature range \(134.3\,\,{\text{K}} \leqslant T \leqslant 373.15\,\,{\text{K}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Rykov, S.V. and Kudryavtseva, I.V., Russ. J. Phys. Chem. A, 2022, vol. 96, no. 10, p. 1421.

    Article  Google Scholar 

  2. Kudryavtseva, I.V., Rykov, S.V., and Rykov, V.A., Nauchno-Tekh. Vestn. Povolzh’ya, 2021, no. 12, p. 205.

  3. Tsvetkov, O.B., Mitropov, V.V., and Laptev, Yu.A., Vestn. Mezhdunar. Akad. Kholoda, 2021, no. 3, p. 75.

  4. Tsvetkov, O.B., Mitropov, V.V., Prostorova, A.O., and Laptev, Yu.A., J. Phys.: Conf. Ser., 2020, vol. 1683, p. 032021.

    Google Scholar 

  5. Di Nicola, G., Ciarrocchi, E., Coccia, G., and Pierantozzi, M., Int. J. Refrig., 2014, vol. 45, p. 168.

    Article  Google Scholar 

  6. Tomassetti, S., Coccia, G., Pierantozzi, M., and Di Nicola, G., Int. J. Refrig., 2020, vol. 117, p. 358.

    Article  Google Scholar 

  7. Di Nicola, G., Pierantozzi, M., Petrucci, G., and Stryjek, R., J. Thermophys. Heat Transfer, 2016, vol. 30, p. 1.

    Article  Google Scholar 

  8. Yang, S., Tian, J., and Jiang, H., Fluid Phase Equilib., 2020, vol. 509, p. 112459.

    Article  Google Scholar 

  9. Amooey, A.A., J. Eng. Phys. Thermophys., 2017, vol. 90, no. 2, p. 392.

    Article  Google Scholar 

  10. Ishida, H., Mori, S., Kariya, K., and Miyara, A., Proc. 24th Int. Congress of Refrigeration, Yokohama, 2015, p. 683.

  11. Alam, Md.J., Yamaguchi, K., Hori, Y., Kariya, K., and Miyara, A., Int. J. Refrig., 2019, vol. 104, p. 221.

    Article  Google Scholar 

  12. Alam, Md.J., Islam, M.A., Kariya, K., and Miyara, A., Int. J. Refrig., 2018, vol. 90, p. 174.

    Article  Google Scholar 

  13. Perkins, R.A. and Huber, M.L., J. Chem. Eng. Data, 2017, vol. 62, p. 2659.

    Article  Google Scholar 

  14. Perkins, R.A. and Huber, M.L., J. Chem. Eng. Data, 2011, vol. 56, p. 4868.

    Article  Google Scholar 

  15. Kim, D., Liu, H., Yang, X., Yang, F., Morfitt, J., Arami-Niya, A., Ryu, M., Duan, Y., and May, E.F., Int. J. Refrig., 2021, vol. 131, p. 990.

    Article  Google Scholar 

  16. Mondal, D., Kariya, K., Tuhin, A.R., Miyoshi, K., and Miyara, A., Int. J. Refrig., 2021, vol. 129, p. 109.

    Article  Google Scholar 

  17. Haowen, G., Xilei, W., Yuan, Zh., Zhikai, G., Xiaohong, H., and Guangming, Ch., Ind. Eng. Chem. Res., 2021, vol. 60, p. 9592.

    Article  Google Scholar 

  18. Alam, Md., Islam, J.M.A., Kariya, K., and Miyara, A., Int. J. Refrig., 2017, vol. 84, p. 220.

    Article  Google Scholar 

  19. Perkins, R.A. and Huber, M.L., Int. J. Thermophys., 2020, vol. 41, p. 103.

    Article  ADS  Google Scholar 

  20. Miyara, A., Fukuda, R., and Tsubaki, K., Trans. JSRAE, 2011, vol. 28, p. 435.

    Google Scholar 

  21. Perkins, R.A., Huber, M.L., and Assael, M.J., J. Chem. Eng. Data, 2016, vol. 61, p. 3286.

    Article  Google Scholar 

  22. Yata, J., Hori, M., Niki, M., Isono, Y., and Yanagitani, Y., Fluid Phase Equilib., 2000, vol. 174, p. 221.

    Article  Google Scholar 

  23. Froba, A.P., Krzeminski, K., and Leipertz, A., Int. J. Thermophys., 2004, vol. 25, p. 987.

    Article  ADS  Google Scholar 

  24. Assael, M.J. and Karagiannidis, E., Int. J. Thermophys., 1993, vol. 14, p. 183.

    Article  ADS  Google Scholar 

  25. Gross, U., Song, Y.W., and Hahne, E., Int. J. Thermophys., 1992, vol. 13, p. 957.

    Article  ADS  Google Scholar 

  26. Tanaka, Y., Miyake, A., Kashiwagi, H., and Makita, T., Int. J. Thermophys., 1988, vol. 9, p. 465.

    Article  ADS  Google Scholar 

  27. Tanaka, Y. and Sotani, T., Int. J. Thermophys., 1996, vol. 17, p. 293.

    Article  ADS  Google Scholar 

  28. Tsvetkov, O.B., Laptev, Yu.A., and Asambaev, A.G., Int. J. Thermophys., 1994, vol. 15, p. 203.

    Article  ADS  Google Scholar 

  29. Ueno, Y., Kobayashi, Y., Nagasaka, Y., and Nagashima, A., Trans. Jpn. Soc. Mech. Eng., Ser. B, 1991, vol. 57, no. 541, p. 3169.

    Google Scholar 

  30. Nieto de Castro, C.A., Int. J. Thermophys., 1997, vol. 18, p. 1077.

    Article  ADS  Google Scholar 

  31. Jeong, S.U., Kim, M.S., and Ro, S.T., Int. J. Thermophys., 1999, vol. 20, p. 55.

    Article  Google Scholar 

  32. Laesecke, A., Perkins, R.A., and Nieto de Castro, C.A., Fluid Phase Equilib., 1992, vol. 80, p. 263.

    Article  Google Scholar 

  33. Papadaki, M., Schmitt, M., Seitz, A., Stephan, K., Taxis, B., and Wakeham, W.A., Int. J. Thermophys., 1993, vol. 14, p. 173.

    Article  ADS  Google Scholar 

  34. Ro, S.T., Kim, J.Y., and Kim, D.S., Int. J. Thermophys., 1995, vol. 16, p. 1193.

    Article  ADS  Google Scholar 

  35. Kim, S.H., Kim, D.S., Kim, M.S., and Ro, S.T., Int. J. Thermophys., 1993, vol. 14, p. 937.

    Article  ADS  Google Scholar 

  36. Perkins, R.A., Laesecke, A., and Nieto de Castro, C.A., Fluid Phase Equilib., 1992, vol. 80, p. 275.

    Article  Google Scholar 

  37. Nieto de Castro, C.A., Tufeu, R., and Le Neindre, B., Int. J. Thermophys., 1992, vol. 13, p. 383.

    Article  ADS  Google Scholar 

  38. Yata, J., Hori, M., Kurahashi, T., and Minamiyama, T., Fluid Phase Equilib., 1992, vol. 80, p. 287.

    Article  Google Scholar 

  39. Haynes, W.M., Thermophysical Properties of HFC-, p. 143.

  40. Yata, J., Hori, M., Kobayashi, K., and Minamiyama, T., Int. J. Thermophys., 1996, vol. 17, p. 561.

    Article  ADS  Google Scholar 

  41. Gross, U., Songa, Y.W., and Hahne, E., Fluid Phase Equilib., 1992, vol. 76, p. 273.

    Article  Google Scholar 

  42. Gurova, A.N., Mardolcar, U.V., and Nieto de Castro, C.A., Int. J. Thermophys., 1999, vol. 20, p. 63.

    Article  Google Scholar 

  43. Marsh, K.N., Perkins, R.A., and Ramires, M.L.V., J. Chem. Eng. Data, 2002, vol. 47, p. 932.

    Article  Google Scholar 

  44. Filippov, L.P., Prognozirovanie teplofizicheskikh svoistv zhidkostei i gazov (Prediction of Thermophysical Properties of Liquids and Gases), Moscow: Energoatomizdat, 1988.

  45. Kolobaev, V.A., Popov, P.V., Kozlov, A.D., Rykov, S.V., Kudryavtseva, I.V., Rykov, V.A., Sverdlov, A.V., and Ustyuzhanin, E.E., Meas. Tech., 2021, vol. 64, p. 109.

    Article  Google Scholar 

  46. Tsvetkov, O.B., Laptev, Yu.A., and Mitropov, V.V., Mater. 8-i Rossiiskoi natsional’noi konferentsii po teploobmenu (Proc. 8th Russ. Natl. Conf. on Heat Transfer), Moscow: Mosk. Energ. Inst., 2022, vol. 2, p. 217.

  47. Richter, M., McLinden, M.O., and Lemmon, E.W., J. Chem. Eng. Data, 2011, vol. 56, p. 3254.

    Article  Google Scholar 

  48. Fang, Y., Ye, G., Ni, H., Jiang, Q., Bao, K., Han, X., and Chen, G., J. Chem. Eng. Data, 2020, vol. 65, p. 4215.

    Article  Google Scholar 

  49. Fedele, L., Bobbo, S., Scattolini, M., Zilio, C., and Akasaka, R., Int. J. Refrig., 2020, vol. 118, p. 139.

    Article  Google Scholar 

  50. Mondéjar, M.E., McLinden, M.O., and Lemmon, E.W., J. Chem. Eng. Data, 2015, vol. 60, p. 2477.

    Article  Google Scholar 

  51. Thol, M. and Lemmon, E.W., Int. J. Thermophys., 2016, vol. 37, p. 28.

    Article  ADS  Google Scholar 

  52. Di Nicola, G., Brown, J.S., Fedele, L., Bobbo, S., and Zilio, C., J. Chem. Eng. Data, 2012, vol. 57, p. 2197.

    Article  Google Scholar 

  53. Akasaka, R. and Lemmon, E.W., J. Chem. Eng. Data, 2019, vol. 64, p. 4679.

    Article  Google Scholar 

  54. Sakoda, N., Higashi, Y., and Akasaka, R., J. Chem. Eng. Data, 2021, vol. 66, p. 734.

    Article  Google Scholar 

  55. McLinden, M.O. and Akasaka, R., J. Chem. Eng. Data, 2020, vol. 65, p. 4201.

    Article  Google Scholar 

  56. Lemmon, E.W., Huber, M.L., and McLinden, M.O., J. Chem. Eng. Data, 2015, vol. 60, p. 3745.

    Article  Google Scholar 

  57. Lemmon, E.W. and Span, R., J. Chem. Eng. Data, 2015, vol. 60, p. 3745.

  58. Froba, A.P., Krzeminski, K., and Leipertz, A.

  59. Lemmon, E.W., McLinden, M.O., and Wagner, W., J. Chem. Eng. Data, 2009, vol. 54, p. 3141.

    Article  Google Scholar 

  60. Fedele, L., Di Nicola, G., Brown, J.S., Colla, L., and Bobbo, S., Int. J. Refrig., 2016, vol. 69, p. 243.

    Article  Google Scholar 

  61. Huber, M.L., NISTIR 8209. Models for Viscosity, Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in Refprop v10.0, 2018.

  62. Perkins, R.A., Sengers, J.V., Abdulagatov, I.M., and Huber, M.L., Int. J. Thermophys., 2013, vol. 34, p. 191.

    Article  ADS  Google Scholar 

  63. Kadanoff, L. and Swift, J., Phys. Rev., 1968, vol. 166, p. 89.

    Article  ADS  Google Scholar 

  64. Ma, Sh.-K., Modern Theory of Critical Phenomena, New York: W.A. Benjamin, 1976.

    Google Scholar 

  65. Rykov, V.A., Rykov, S.V., and Sverdlov, A.V., J. Phys.: Conf. Ser., 2019, vol. 1385, p. 012013.

    Google Scholar 

  66. Kolobaev, V.A., Rykov, S.V., Kudryavtseva, I.V., Ustyuzhanin, E.E., Popov, P.V., Rykov, V.A., and Kozlov, A.D., Meas. Tech., 2022, vol. 65, no. 5, p. 330.

    Article  Google Scholar 

  67. Rykov, S.V., Kudriavtseva, I.V., Sverdlov, A.V., and Rykov, V.A., AIP Conf. Proc., 2020, vol. 2285, p. 030070.

    Article  Google Scholar 

  68. Le Guillou, J.C. and Zinn-Justin, J., J. Phis. Lett., 1985, vol. 46, p. 137.

    Article  Google Scholar 

  69. Kiselev, S.B., in Obzory po teplofizicheskim svoistvam veshchestv (Reviews on Thermophysical Properties of Substances), Moscow: Inst. Vys. Temp. Akad. Nauk SSSR, 1989, no. 2(76).

  70. Kudryavtseva, I.V., Rykov, V.A., Rykov, S.V., and Ustyuzhanin, E.E., J. Phys.: Conf. Ser., 2018, vol. 946, p. 012118.

    Google Scholar 

  71. Forsythe, G., Malcolm, M., and Moler, C., Computer Methods for Mathematical Computations, Engel Wood Cliffs: Prentice-Hall, 1977.

  72. Le Neindre, B., Fluid Phase Equilib., 2017, vol. 450, p. 1.

    Article  Google Scholar 

  73. Pierantozzi, M., Tomassetti, S., and Di Nicola, G., App-l. Sci., 2023, vol. 13, p. 260.

    Article  Google Scholar 

  74. Advances in New Heat Transfer Fluids: From Numerical to Experimental Techniques, New York: Taylor & Francis, 2017.

  75. Rykov, S.V., Kudryavtseva, I.V., Rykov, V.A., and Ustyuzhanin, E.E., J. Phys.: Conf. Ser., 2021, vol. 2057, p. 012113.

    Google Scholar 

  76. Rykov, S.V., Kudryavtseva, I.V., and Rykov, V.A., Vestn. Mezhdunar. Akad. Kholoda, 2022, no. 2, p. 70.

  77. Tomassetti, S., Di Nicola, G., and Kondou, Ch., Int. J. Refrig., 2022, vol. 133, p. 172.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rykov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rykov, S.V., Kudryavtseva, I.V. & Rykov, V.A. New Correlation Model of Thermal Conductivity of Liquid Hydrofluorochloro Derivatives of Olefins, Hydrofluorocarbons, and Hydrochlorofluorocarbons. High Temp 61, 775–784 (2023). https://doi.org/10.1134/S0018151X23050140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23050140

Navigation