Skip to main content
Log in

Asymmetric Complex Plasma Pressure and Isothermal Compressibility with Regard to Nonlinear Screening in the Average Wigner–Seitz Cell Model

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The study considers a two-component electroneutral equilibrium complex plasma of finite-sized macroions with charges Z (Z \( \gg \) 1) and point oppositely charged microions with unit charges. System pressure was calculated in the Poisson–Boltzmann approximation with regard to nonlinear screening of macroions by microions in the average Wigner–Seitz cell model. One of the calculation methods obtains pressure by calculating the nonideal part of the Helmholtz free energy; the second is specific to the Wigner–Seitz average cell model. It is shown that the pressure and isothermal compressibility of the plasma are positive over the entire range of macroion concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Dijkstra, M. and van Roij, R., J. Phys.: Condens. Matter, 1998, vol. 10, no. 6, p. 1219.

    ADS  Google Scholar 

  2. Diehl, A., Barbosa, M., and Levin, Y., Europhys. Lett., 2001, vol. 53, no. 1, p. 86.

    Article  ADS  Google Scholar 

  3. Aleksander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., and Hone, D., J. Chem. Phys., 1984, vol. 80, p. 5776.

    Article  ADS  Google Scholar 

  4. Bystrenko, O. and Zagorodny, A., Phys. Lett. A, 1999, vol. 255, nos. 4–6, p. 325.

    Article  ADS  Google Scholar 

  5. Martynova, I.A., Iosilevskiy, I.L., and Shagayda, A.A., Contrib. Plasma Phys., 2017, vol. 58, nos. 2–3, p. 203.

    Article  ADS  Google Scholar 

  6. Martynova, I., Iosilevskiy, I., and Shagayda, A., J. Phys.: Conf. Ser., 2018, vol. 946, p. 012147.

    Google Scholar 

  7. D’yachkov, L.G., Phys. Lett. A, 2005, vol. 340, p. 440.

    Article  ADS  Google Scholar 

  8. Zhukhovitskii, D.I., Khrapak, A.G., and Yakubov, I.T., Teplofiz. Vys. Temp., 1984, vol. 22, no. 5, p. 833.

    Google Scholar 

  9. Khrapak, S., Khrapak, A., Ivlev, A., and Morfill, G., Phys. Rev. E, 2014, vol. 89, no. 2, p. 023102.

    Article  ADS  Google Scholar 

  10. Farouki, R.T. and Hamaguchi, S., J. Chem. Phys., 1994, vol. 101, no. 11, p. 9885.

    Article  ADS  Google Scholar 

  11. Hamaguchi, S., Farouki, R.T., and Dubin, D., Phys. Rev. E, 1997, vol. 56, p. 4671.

    Article  ADS  Google Scholar 

  12. Martynova, I. and Iosilevskiy, I., Contrib. Plasma Phys., 2016, vol. 56, no. 5, p. 432.

    Article  ADS  Google Scholar 

  13. Martynova, I.A. and Iosilevskii, I.L., High Temp., 2022, vol. 60, p. S307.

    Article  Google Scholar 

  14. Martynova, I., Iosilevskiy, I., and Shagayda, A., J. Phys.: Conf. Ser., 2018, vol. 1094, p. 012032.

    Google Scholar 

  15. Martynova, I.A. and Iosilevskiy, I.L., Contrib. Plasma Phys., 2019, vol. 59, nos. 4–5, p. e201800154.

    Article  ADS  Google Scholar 

  16. Martynova, I.A. and Iosilevskiy, I.L., Contrib. Plasma Phys., 2022, vol. 62, no. 9, p. e202200110.

    Article  ADS  Google Scholar 

  17. Martynova, I.A. and Iosilevskii, I.L., High Temp., 2023, vol. 61, no. 2, p. 145.

    Article  Google Scholar 

  18. Martynova, I. and Iosilevskiy, I., Contrib. Plasma Phys., 2021, vol. 61, no. 10, p. e202100007.

    Article  ADS  Google Scholar 

  19. Martynova, I. and Iosilevskiy, I., Contrib. Plasma Phys., 2022, vol. 62, no. 3, p. 202100151.

    Article  ADS  Google Scholar 

  20. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 5: Statisticheskaya fizika (Statistical Physics), Moscow: Fizmatlit, 2002.

  21. Iosilevskii, I.L., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), vol.: Prilozhenie III-1 (Appendix III-1), Starostin, A.N. and Iosilevskii, I.L., Eds., Moscow: Fizmatlit, 2004, p. 349.

  22. Szichman, H., Eliezer, S., and Salzmann, D., J. Quant. Spectrosc. Radiat. Transfer, 1987, vol. 38, no. 4, p. 281.

    Article  ADS  Google Scholar 

  23. Filippov, A.V., Reshetnyak, V.V., Starostin, A.N., Tkachenko, I.M., and Fortov, V.E., JETP Lett., 2020, vol. 110, no. 10, p. 659.

    Article  ADS  Google Scholar 

  24. Kirzhnits, D.A., Lozovik, Yu.E., and Shpatakovskaya, G.V., Sov. Phys. Usp., 1975, vol. 18, p. 649.

    Article  ADS  Google Scholar 

  25. Kalitkin, N.N., Kuz’mina, L.V., and Shpatakovskaya, G.V., Teplofiz. Vys. Temp., 1977, vol. 15, no. 1, p. 186.

    Google Scholar 

  26. Kalitkin, N.N., in Matematicheskoe modelirovanie. Sborbik statei (Mathematical Modeling: Collection of Papers), Samarskii, A.A. and Kalitkin, N.N., Eds., Moscow: Nauka, 1989, p. 114.

  27. Kopyshev, V.P., Preprint Keldysh Inst. Appl. Math., USSR Acad. Sci., Moscow, 1978, no. 59.

  28. Nikiforov, A.F., Novikov, V.G., and Uvarov, V.B., Kvantovo-statisticheskie modeli nizkotemperaturnoi plazmy (Quantum-Statistical Models of Low-Temperature Plasma), Moscow: Fizmatlit, 2000.

  29. Nikiforov, A.F., Novikov, V.G., Uvarov, V.B., Teplofiz. Vys. Temp., 1987, vol. 25, no. 1, p. 12.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Martynova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynova, I.A., Iosilevskiy, I.L. Asymmetric Complex Plasma Pressure and Isothermal Compressibility with Regard to Nonlinear Screening in the Average Wigner–Seitz Cell Model. High Temp 61, 770–774 (2023). https://doi.org/10.1134/S0018151X23060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23060032

Navigation