Skip to main content
Log in

Inexact Newton Method for Solving Generalized Nash Equilibrium Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, we present an inexact Newton method to solve generalized Nash equilibrium problems (GNEPs). Two types of GNEPs are studied: player convex and jointly convex. We reformulate the GNEP into an unconstrained optimization problem using a complementarity function and solve it by the proposed method. It is found that the proposed numerical scheme has the global convergence property for both types of GNEPs. The strong BD-regularity assumption for the reformulated system of GNEP plays a crucial role in global convergence. In fact, the strong BD-regularity assumption and a suitable choice of a forcing sequence expedite the inexact Newton method to Q-quadratic convergence. The efficiency of the proposed numerical scheme is shown for a collection of problems, including the realistic internet switching problem, where selfish users generate traffic. A comparison of the proposed method with the existing semi-smooth Newton method II for GNEP is provided, which indicates that the proposed scheme is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that the manuscript has no associated data. For the numerical part of the paper and MATLAB codes for the proposed algorithms, readers are requested to contact the first author.

Notes

  1. Throughout the paper, in \(\mathbb {R}^n\), we use the notations \(\Vert \cdot \Vert \) and \(\langle \cdot , \cdot \rangle \) to represent the usual Euclidean norm and inner product, respectively.

References

  1. Ardagna, D., Ciavotta, M., Passacantando, M.: Generalized Nash equilibria for the service provisioning problem in multi-cloud systems. IEEE Trans. Serv. Comput. 10(3), 381–395 (2017). https://doi.org/10.1109/TSC.2015.2477836

    Article  Google Scholar 

  2. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954). https://doi.org/10.2307/1907353

    Article  MathSciNet  Google Scholar 

  3. Aussel, D., Lai Nguyen, T.C., Riccardi, R.: Strategic decision in a two-period game using a multi-leader-follower approach: part 1-general setting and weighted Nash equilibrium. J. Appl. Numer. Optim. 4(1), 67–85 (2022). https://doi.org/10.23952/jano.4.2022.1.06

    Article  Google Scholar 

  4. Bongiorno, D.: Rademacher’s theorem in Banach spaces without RNP. Math. Slovaca 67(6), 1345–1358 (2017). https://doi.org/10.1515/ms-2017-0056

    Article  MathSciNet  Google Scholar 

  5. Breton, M., Zaccour, G., Zahaf, M.: A game-theoretic formulation of joint implementation of environmental projects. Eur. J. Oper. Res. 168(1), 221–239 (2006). https://doi.org/10.1016/j.ejor.2004.04.026

    Article  MathSciNet  Google Scholar 

  6. Castellani, M., Giuli, M.: A modified Michael’s selection theorem with application to generalized Nash equilibrium problem. J. Optim. Theory Appl. 196(1), 199–211 (2023). https://doi.org/10.1007/s10957-022-02090-3

    Article  MathSciNet  Google Scholar 

  7. Chen, J.S.: The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem. J. Glob. Optim. 36, 565–580 (2006). https://doi.org/10.1007/s10898-006-9027-y

    Article  MathSciNet  Google Scholar 

  8. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975). https://doi.org/10.1090/S0002-9947-1975-0367131-6

    Article  MathSciNet  Google Scholar 

  9. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1(2), 165–174 (1976). https://doi.org/10.1287/moor.1.2.165

    Article  MathSciNet  Google Scholar 

  10. Clarke, F.H.: Nonsmooth analysis and optimization. Proc. Int. Congr. Math. 5, 847–853 (1983)

    Google Scholar 

  11. Contreras, J., Krawczyk, J.B., Zuccollo, J., García, J.: Competition of thermal electricity generators with coupled transmission and emission constraints. J. Energy Eng. 139(4), 239–252 (2013). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000113

    Article  Google Scholar 

  12. Dali, B., Guediri, M.: Local convergence of the Newton’s method in two step nilpotent Lie groups. J. Nonlinear Var. Anal. 6, 199–212 (2022). https://doi.org/10.23952/jnva.6.2022.3.03

    Article  Google Scholar 

  13. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38(10), 886–893 (1952). https://doi.org/10.1073/pnas.38.10.886

    Article  MathSciNet  Google Scholar 

  14. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982). https://doi.org/10.1137/0719025

    Article  MathSciNet  Google Scholar 

  15. Dutang, C.: Existence theorems for generalized Nash equilibrium problems: an analysis of assumptions. J. Nonlinear Anal. Optim. 4(2), 115–126 (2013)

    MathSciNet  Google Scholar 

  16. Effio, C., Roche, J.R., Herskovits, J.: A feasible direction interior point method for generalized Nash equilibrium with shared constraints. In: EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization, pp. 248–259. Springer (2019). https://doi.org/10.1007/978-3-319-97773-7_23

  17. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996). https://doi.org/10.1137/0917003

    Article  MathSciNet  Google Scholar 

  18. Fabiani, F., Franci, B.: On distributionally robust generalized Nash games defined over the Wasserstein ball. J. Optim. Theory Appl. 199, 298–309 (2023). https://doi.org/10.1007/s10957-023-02284-3

    Article  MathSciNet  Google Scholar 

  19. Facchinei, F., Fischer, A., Kanzow, C.: Inexact Newton methods for semismooth equations with applications to variational inequality problems. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications. Springer, Boston (1996). https://doi.org/10.1007/978-1-4899-0289-4_9

    Chapter  Google Scholar 

  20. Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and Newton methods. Math. Prog. 117, 163–194 (2009). https://doi.org/10.1007/s10107-007-0160-2

    Article  MathSciNet  Google Scholar 

  21. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5, 173–210 (2007). https://doi.org/10.1007/s10288-007-0054-4

    Article  MathSciNet  Google Scholar 

  22. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010). https://doi.org/10.1007/s10479-009-0653-x

    Article  MathSciNet  Google Scholar 

  23. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003). https://doi.org/10.1007/b97544

    Book  Google Scholar 

  24. Fischer, A., Herrich, M., Schönefeld, K.: Generalized Nash equilibrium problems-recent advances and challenges. Pesq Oper. 34(3), 521–558 (2014). https://doi.org/10.1590/0101-7438.2014.034.03.0521

    Article  Google Scholar 

  25. Ghosh, D., Sharma, A., Shukla, K.K., Kumar, A., Manchanda, K.: Globalized robust Markov perfect equilibrium for discounted stochastic games and its application on intrusion detection in wireless sensor networks: Part I-theory. Jpn. J. Ind. Appl. Math. 37, 283–308 (2020). https://doi.org/10.1007/s13160-019-00397-9

    Article  MathSciNet  Google Scholar 

  26. Han, Z.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511895043

    Book  Google Scholar 

  27. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54(1), 81–94 (1991). https://doi.org/10.1016/0377-2217(91)90325-P

    Article  Google Scholar 

  28. Kesselman, A., Leonardi, S., Bonifaci, V.: Game-theoretic analysis of internet switching with selfish users. In: International Workshop on Internet and Network Economics. Springer, Berlin Heidelberg, pp. 236–245 (2005). https://doi.org/10.1007/11600930_23

  29. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin, Heidelberg (1985). https://doi.org/10.1007/BFb0074500

    Book  Google Scholar 

  30. Konnov, I.V.: Combined relaxation methods for finding equilibrium points and solving related problems. Russ. Math. (Iz. VUZ) 37(2), 44–51 (1993)

    Google Scholar 

  31. Lai, J., Hou, J.: A smoothing method for a class of generalized Nash equilibrium problems. J. Inequal. Appl. 1, 1–16 (2015). https://doi.org/10.1186/s13660-015-0607-6

    Article  MathSciNet  Google Scholar 

  32. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  Google Scholar 

  33. Pang, J.S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3(3), 443–465 (1993)

    Article  MathSciNet  Google Scholar 

  34. Pang, J.S., Scutari, G., Facchinei, F., Wang, C.: Distributed power allocation with rate constraints in Gaussian parallel interference channels. IEEE Trans. Inf. Theory 54(8), 3471–3489 (2008). https://doi.org/10.1109/TIT.2008.926399

    Article  MathSciNet  Google Scholar 

  35. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18(1), 227–244 (1993). https://doi.org/10.1287/moor.18.1.227

    Article  MathSciNet  Google Scholar 

  36. Robinson, S.M.: Shadow prices for measures of effectiveness, I: linear model. Oper. Res. 41(3), 518–535 (1993)

    Article  MathSciNet  Google Scholar 

  37. Robinson, S.M.: Shadow prices for measures of effectiveness, II: general model. Oper. Res. 41(3), 536–548 (1993)

    Article  MathSciNet  Google Scholar 

  38. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33(3), 520–534 (1965). https://doi.org/10.2307/1911749

    Article  MathSciNet  Google Scholar 

  39. Singh, A., Ghosh, D.: A globally convergent improved BFGS method for generalized Nash equilibrium problems. SeMA (2023). https://doi.org/10.1007/s40324-023-00323-7

    Article  Google Scholar 

  40. Singh, A., Kumar, K., Ghosh, D.: Improved nonmonotone adaptive trust-region method to solve generalized Nash equilibrium problems. J. Nonlinear Convex Anal. 25(1), 11–29 (2023)

    MathSciNet  Google Scholar 

  41. Wu, J., Zhang, L., Zhang, Y.: An inexact Newton method for stationary points of mathematical programs constrained by parameterized quasi-variational inequalities. Numer. Algor. 69, 713–735 (2015). https://doi.org/10.1007/s11075-014-9922-0

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are truly thankful to the editor and reviewers for their constructive comments that substantially improved the quality of the paper. Debdas Ghosh acknowledges the financial support of the research grants MATRICS (MTR/2021/000696) and Core Research Grant (CRG/2022/001347) by the Science and Engineering Research Board, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jen-Chih Yao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Ghosh, D. & Ansari, Q.H. Inexact Newton Method for Solving Generalized Nash Equilibrium Problems. J Optim Theory Appl (2024). https://doi.org/10.1007/s10957-024-02411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-024-02411-8

Keywords

Navigation