Skip to main content
Log in

A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the \(L^2\) product in each cell of the discretization, we are able to mimic the behavior of the Slotboom variables, and eliminate the drift term from the local matrix contributions, while still solving the problem for the primal variables. We show that the proposed numerical scheme is well-posed, and validates numerically that it has the same properties as classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter–Gummel finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter–Gummel scheme (the state-of-the-art for finite volume discretization of transport-dominated problems) to arbitrary high-order approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Inquiries about data availability should be directed to the authors.

References

  1. Abdel, D., Vagner, P., Fuhrmann, J., Farrell, P.: Modelling charge transport in perovskite solar cells: potential-based and limiting ion vacancy depletion. Electrochim. Acta 390, 138696 (2021)

    Article  Google Scholar 

  2. Alì, G., Rotundo, N.: An existence result for elliptic partial differential–algebraic equations arising in semiconductor modeling. Nonlinear Anal. Theory Methods Appl. 72(12), 4666–4681 (2010)

    Article  MathSciNet  Google Scholar 

  3. Alì, G., Bartel, A., Günther, M., Tischendorf, C.: Elliptic partial differential-algebraic multiphysics models in electrical network design. Math. Models Methods Appl. Sci. 13(09), 1261–1278 (2003)

    Article  MathSciNet  Google Scholar 

  4. Arndt, D., Bangerth, W., Blais, B., Fehling, M., Gassmöller, R., Heister, T., Heltai, L., Köcher, U., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.P., Proell, S., Simon, K., Turcksin, B., Wells, D., Zhang, J.: The deal.II library, version 9.3. J. Numer. Math. 29(3), 171–186 (2021)

    Article  MathSciNet  Google Scholar 

  5. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal. II finite element library: design, features, and insights. Comput. Math. Appl. 81, 407–422 (2021)

    Article  MathSciNet  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  Google Scholar 

  8. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121(4), 637–670 (2012)

    Article  MathSciNet  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)

    Google Scholar 

  10. Brezzi, F., Marini, L.D., Pietra, P.: Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75(1–3), 493–514 (1989)

    Article  MathSciNet  Google Scholar 

  11. Brezzi, F., Marini, L.D., Pietra, P.: Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26(6), 1342–1355 (1989)

    Article  MathSciNet  Google Scholar 

  12. Chainais-Hillairet, C., Jüngel, A., Shpartko, P.: A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors. Numerical Methods for Partial Differential Equations (2015)

  13. Chainais-Hillairet, C., Herda, M., Lemaire, S., Moatti, J.: Long-time behaviour of hybrid finite volume schemes for advection-diffusion equations: linear and nonlinear approaches. Numer. Math. 151(4), 963–1016 (2022). https://doi.org/10.1007/s00211-022-01289-w

    Article  MathSciNet  Google Scholar 

  14. Chen, G., Monk, P., Zhang, Y.: An HDG method for the time-dependent drift-diffusion model of semiconductor devices. J. Sci. Comput. 80(1), 420–443 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  16. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)

    Article  MathSciNet  Google Scholar 

  18. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  19. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78(265), 1–24 (2009)

    Article  MathSciNet  Google Scholar 

  20. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015). https://doi.org/10.1137/140993971

    Article  MathSciNet  Google Scholar 

  21. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(02), 265–295 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2004)

    Google Scholar 

  23. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2009). https://doi.org/10.1093/imanum/drn084

    Article  MathSciNet  Google Scholar 

  24. Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T.: Mathematical Methods: Drift-Diffusion Models. In: J. Piprek (ed.) Handbook of Optoelectronic Device Modeling and Simulation, vol. 2, chap. 50, pp. 733–771. CRC Press, Boca Raton (2017)

  25. Farrell, P., Linke, A.: Uniform second order convergence of a complete flux scheme on unstructured 1d grids for a singularly perturbed advection-diffusion equation and some multidimensional extensions. J. Sci. Comput. 72(1), 373–395 (2017)

    Article  MathSciNet  Google Scholar 

  26. Farrell, P., Koprucki, T., Fuhrmann, J.: Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond boltzmann statistics. J. Comput. Phys. 346, 497–513 (2017)

    Article  MathSciNet  Google Scholar 

  27. Gärtner, K.: Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions. J. Comput. Electron. 14(3), 773–787 (2015)

    Article  Google Scholar 

  28. Grisvard, P.: Elliptic problems in nonsmooth domains. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  29. Lazarov, R.D., Zikatanov, L.T.: An exponential fitting scheme for general convection-diffusion equations on tetrahedral meshes. arXiv preprint arXiv:1211.0869 (2012)

  30. Liu, L., van Dijk, J., ten Thije Boonkkamp, J., Mihailova, D., van der Mullen, J.: The complete flux scheme–error analysis and application to plasma simulation. J. Comput. Appl. Math. 250, 229–243 (2013)

    Article  MathSciNet  Google Scholar 

  31. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, Vienna (1986)

    Book  Google Scholar 

  32. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, Berlin (1986)

    Book  Google Scholar 

  33. Mock, M.S.: On equations describing steady-state carrier distributions in a semiconductor device. Commun. Pure Appl. Math. 25(6), 781–792 (1972)

    Article  MathSciNet  Google Scholar 

  34. Morton, K.: Numerical Solution of Convection-Diffusion Problems. Applied Mathematics. Taylor & Francis, Milton Park (1996)

    Google Scholar 

  35. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  Google Scholar 

  36. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics vol. 24, 2nd edn. Springer, Berlin (2008)

  37. Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  38. Shewchuk, J.: Triangle: a two-dimensional quality mesh generator and Delaunay triangulator. http://www.cs.cmu.edu/~quake/triangle.html, University of California at Berkeley

  39. Si, H.: Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1-11:36 (2015)

    Article  MathSciNet  Google Scholar 

  40. Slotboom, J.: Computer-aided two-dimensional analysis of bipolar transistors. IEEE Trans. Electron. Devices 20(8), 669–679 (1973). https://doi.org/10.1109/t-ed.1973.17727

    Article  Google Scholar 

  41. Taylor, M.E.: Partial Differential Equations III. Springer, New York (2011)

    Book  Google Scholar 

  42. ten Thije Boonkkamp, J., Anthonissen, M.: The finite volume-complete flux scheme for advection-diffusion-reaction equations. J. Sci. Comput. 46(1), 47–70 (2011)

    Article  MathSciNet  Google Scholar 

  43. Ten Thije Boonkkamp, J., Schilders, W.H.: An exponential fitting scheme for the electrothermal device equations specifically for the simulation of avalanche generation. COMPEL-The Int. J. Comput. Math. Electric. Electron. Eng. 12(2), 95–111 (1993)

    Article  MathSciNet  Google Scholar 

  44. ten Thije Boonkkamp, J.: A complete flux scheme for one-dimensional combustion simulation. In: Finite volumes for complex applications IV, pp. 573–583. ISTE, London (2005)

  45. Thiart, G.D.: Improved finite-difference scheme for the solution of convection-diffusion problems with the simplen algorithm. Numer. Heat Transf. Part B 18(1), 81–95 (1990)

    Article  Google Scholar 

  46. van’t Hof, B., ten Thije Boonkkamp, J.H.M., Mattheij, R.M.M.: Discretization of the stationary convection-diffusion-reaction equation. Numer. Methods Partial Differential Equations 14(5), 607–625 (1998)

Download references

Funding

This work was partially supported by funds from GNCS-INdAM “Professori Visitatori Bando 2020”, project “A comparison between finite volume and hybridizable discontinuous Galerkin methods for the simulation of micro- and nano-electronic devices”, the Leibniz competition 2020 as well as the National Natural Science Foundation of China (Grant No. 12301496), the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Pisa, CUP I57G22000700001. LH acknowledges partial support from the grant MUR PRIN 2022 No. 2022WKWZA8 “Immersed methods for multiscale and multiphysics problems (IMMEDIATE)”. LH is member of Gruppo Nazionale per il Calcolo Scientifico (GNCS) of Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Piani, S., Farrell, P. et al. A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems. J Sci Comput 99, 33 (2024). https://doi.org/10.1007/s10915-024-02481-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02481-w

Keywords

Navigation