Skip to main content
Log in

Slip and chemical reaction effects on the peristaltic rheology of a viscoplastic liquid in different wave frames: application of a high-permeability medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nanofluid flow due to artificial phenomena such as sinusoidal contraction-relaxation of flexible walls has a significant application in various bio-medical industries, chemical engineering, and new emerging technologies. The present analysis explores the influences of slip conditions and chemical reactions on the viscoplastic nanofluid rheology due to peristaltic pumping through a non-uniform (divergent) channel adjacent to a saturated, non-Darcian, high-permeability porous medium. The Casson fluid is used as a viscoplastic liquid in the current investigation. Mathematical formulations are performed by utilizing Cartesian coordinates. This study is based on the greater wavelength hypothesis and the creeping principle. High permeability is considered to symbolize topographically small-sized porous media. Two external forces are present in the momentum equation: one is the Darcian force, and the second is the Forchheimer inertial force. Scaling variables are used to make the rheological system dimensionless. The non-dimensional flow system is expressed in the PDEs and transformed into the ODEs by using biological approximations. The impacts of chemical reaction parameter \(\left(\chi \right)\), Darcy number \(({\text{DA}})\), second (higher) order velocity slip parameters \((b1,b2)\), thermal slip parameter \((b3)\), concentration slip parameter \((b4)\), Forchheimer number \(({\text{Fs}})\), Casson parameter \((\Gamma )\), Brownian motion \(({\text{nb}})\), thermophoresis \(({\text{nt}})\), heat source/sink parameter \((\sigma )\), Radiation parameter \(({\text{Rn}})\), Brinkman number \(({\text{br}})\), Grashof number \(({\text{GR}})\), local nanoparticle Grashof number \(({\text{GM}})\), and Prandtl number \(({\text{pr}})\) on the velocity profile \(\left(u\left(\omega \right)\right)\), stream function \(\left(\psi \left(\omega \right)\right)\), temperature profile \(\left(\phi \left(\omega \right)\right)\), and nanoparticles mass concentration phenomena \(\left(\Theta \left(\omega \right)\right)\) are studied. Four unique sorts of peristaltic waves (Cosine, Sawtooth, Sine, and Square waves) are utilized to break down the flow. The higher intensity of the Forchheimer force strongly disturbed the parabolic shape of the axial velocity. The thermal enhancement is founded on increasing Brownian motion and thermophoresis parameters. Asymmetric nature is found in graphs due to the non-uniform nature of the flow channel. The contrast among viscous liquid and Casson fluid is also discussed. The key advantage of this investigation is that it is productive in differentiating the role of various natures of peristaltic waves in biological fluids’ motion. This model is productive for the thermal enhancement of mechanical and chemical rheological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Abbreviations

a :

Half-with of the non-uniform (divergent) channel

\(\Omega\) :

Wave speed

\({\mu }_{0}\) :

Plastic dynamic viscosity of the non-viscous fluid

\({\in }_{nm}\) :

\((m,n)-{\text{th}}\) element of deformation rate

\({\pi }_{0}\) :

Critical point of \(\pi\)

\({\Theta }_{1}\) :

Concentration at upper wall

\({\Theta }_{0}\) :

Concentration at lower wall

\(\widetilde{U,}\widetilde{V}\) :

Velocity components in axial and transverse directions

\(\widetilde{S}\) :

Cauchy stress tensor

\(\tau\) :

Ratio effective heat capacity of nanoparticles to effective heat capacity of fluid

\(\mu\) :

Dynamic viscosity of the fluid

\(G\varepsilon\) :

Thermal expansion coefficient

\({\widetilde{S}}_{\widetilde{X}\widetilde{X}},{ \widetilde{S}}_{\widetilde{X}\widetilde{\omega } }\& {\widetilde{S}}_{\widetilde{\omega }\widetilde{\omega }}\) :

Components of the extra stress tensor

\({q}_{0}\) :

Heat source/sink parameter

\(\Delta\) :

Mean absorption coefficient

\({D}_{{\text{B}}}\) :

Brownian diffusion coefficient

\(\varsigma\) :

Stefan–Boltzmann constant

\(\widetilde{M}\) :

Dimensional non-uniform parameter

\(\widetilde{Z}\) and \(-\widetilde{Z}\) :

Upper and lower walls of the non-uniform channel

\({P}_{0}\) :

Yield stress (fluid or material property corresponding to yield point) of the liquid

\(\pi\) :

Product of deformation rate with itself

\({\phi }_{1}\) :

Temperature at the upper wall

\({\phi }_{0}\) :

Temperature at the lower wall

\(\widetilde{X},\) \(\widetilde{\omega }\) :

Flow coordinates in axial and transverse directions,

\(\widetilde{P}\) :

Pressure

\({\varphi }_{{\text{f}}}\) :

Fluid density

\({(\varphi C)}_{{\text{f}}}\) :

Effective heat capacity of fluid

\({k}^{{\text{p}}}\) :

Permeability of the porous medium

\({K}_{1}\) :

Chemical reaction parameter

\(\gamma\) :

Thermal diffusivity

\({C}_{{\text{f}}}\) :

Heat capacity of fluid

\({(\varphi C)}_{{\text{p}}}\) :

Effective heat capacity of nanoparticles

\({D}_{{\text{T}}}\) :

Thermophoretic diffusion coefficient

\(G\varepsilon \mathrm{^{\prime}}\) :

Concentration expansion coefficient

\(x\) :

Axial coordinate of flow geometry

\(t\) :

Time

v :

Velocity component in the transverse direction

\(\phi\) :

Temperature profile

\({\text{nt}}\) :

Thermophoresis parameter

\({\text{GM}}\) :

Grashof number

\({\text{Re}}\) :

Reynold’s number

\({\text{DA}}\) :

Darcy number

\({\text{pr}}\) :

Prandtl number

\(A\) :

Amplitude ratio

\({\text{Fs}}\) :

Forchheimer drag

\(m\) :

Non-uniform (divergent) parameter

\(\chi\) :

Chemical reaction parameter

\({\text{Ec}}\) :

Eckert number

\(\omega\) :

Transverse coordinate of flow geometry

\(u\) is the velocity component in the axial direction:

\(u\) is the velocity component in the axial direction

\(p\) :

Pressure

\(\Theta\) :

Mass concentration

\({\text{nb}}\) :

Brownian motion parameter

\({\text{GR}}\) :

Local temperature Grashof number

\(\delta\) :

Wavelength

\({\text{Rn}}\) :

Thermal radiation parameter

\(\sigma\) :

Dimensionless heat source/sink parameter

\({b}_{j} (j=1-4)\) :

Slip parameters (1 and 2 stand for velocity slip, 3 stand for thermal, and 4 stand for concentration)

\({\text{br}}\) :

Brinkman number

\({s}_{ij}\) :

Components of the extra tensor

\(z\) :

Upper wall of flow channel

References

  1. J. Shukla, P. Chandra, R. Sharma, G. Radhakrishnamacharya, Effects of peristaltic and longitudinal wave motion of the channel wall on movement of micro-organisms: application to spermatozoa transport. J. Biomech. 21, 947–954 (1988)

    Article  Google Scholar 

  2. T.W. Latham, Fluid motions in a peristaltic pump. PhD Thesis. Massachusetts Institute of Technology (1966)

  3. Y. Fung, C. Yih, Peristaltic transport 1968

  4. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    Article  ADS  Google Scholar 

  5. A. Kotnurkar, C. HADAPAD, Magnetohydrodynamic peristaltic transport of Casson fluid embedded with chemical reaction in an asymmetrical permeable conduit. J. New Results Sci. 10, 98–113 (2021)

    Google Scholar 

  6. M. Dhange, G. Sankad, Simultaneous chemical reactions effect on dispersion of a solute in peristaltic propulsion of a Newtonian fluid in an inclined channel with wall properties. Int. J. Appl. Mech. Eng. 24 (2019)

  7. R. Bank, G. Dash, Chemical reaction effect on peristaltic motion of micropolar fluid through a porous medium with heat absorption in the presence of magnetic field. Adv. Appl. Sci. Res. 6, 20–34 (2015)

    Google Scholar 

  8. G.R. Machireddy, V.R. Kattamreddy, Impact of velocity slip and joule heating on MHD peristaltic flow through a porous medium with chemical reaction. J. Niger. Math. Soc. 35, 227–244 (2016)

    Article  MathSciNet  Google Scholar 

  9. S.U. Choi, J.A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL), Argonne, IL (United States) (1995)

  10. D. Tripathi, O.A. Bég, A study on peristaltic flow of nanofluids: application in drug delivery systems. Int. J. Heat Mass Transf. 70, 61–70 (2014)

    Article  Google Scholar 

  11. M.M. Bhatti, M. Sheikholeslami, A. Zeeshan, Entropy analysis on electro-kinetically modulated peristaltic propulsion of magnetized nanofluid flow through a microchannel. Entropy 19, 481 (2017)

    Article  ADS  Google Scholar 

  12. M.M. Bhatti, T. Abbas, M.M. Rashidi, M.E.-S. Ali, Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy 18, 200 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Ellahi, M. Hassan, A. Zeeshan, Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans. Nanotechnol. 14, 726–734 (2015)

    Article  ADS  Google Scholar 

  14. K. Javid, M. Bilal, N. Ali, S.U. Khan. Thermal investigation of peristaltic pumping of modified hybrid nanofluid (Al2O3-TiO2-Cu)/H2O) through a complex wavy convergent channel with electro-magneto-hydrodynamic phenomenon. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089221076592 (2022)

  15. T. Hayat, B. Ahmed, F. Abbasi, A. Alsaedi, Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects. J. Cent. South Univ. 26, 2543–2553 (2019)

    Article  Google Scholar 

  16. N.S. Akbar, S. Nadeem, Endoscopic effects on peristaltic flow of a nanofluid. Commun. Theor. Phys. 56, 761 (2011)

    Article  ADS  Google Scholar 

  17. H. Ge-JiLe, K. Javid, S.U. Khan, M. Raza, M.I. Khan, S. Qayyum, Double diffusive convection and Hall effect in creeping flow of viscous nanofluid through a convergent microchannel: a biotechnological applications. Comput. Methods Biomech. Biomed. Eng. 24, 1326–1343 (2021)

    Article  Google Scholar 

  18. R. Pourrajab, A. Noghrehabadi, M. Behbahani, E. Hajidavalloo, An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J. Therm. Anal. Calorim. 143, 3331–3343 (2021)

    Article  Google Scholar 

  19. M. Bhatti, S.I. Abdelsalam, Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects. Waves Random Complex Media 1–26 (2021)

  20. V. Narla, D. Tripathi, O.A. Bég, Electro-osmotic nanofluid flow in a curved microchannel. Chin. J. Phys. 67, 544–558 (2020)

    Article  MathSciNet  Google Scholar 

  21. K. Javid, M. Ellahi, K. Al-Khaled, M. Raza, S.U. Khan, M.I. Khan et al., EMHD creeping rheology of nanofluid through a micro-channel via ciliated propulsion under porosity and thermal effects. Case Stud. Therm. Eng. 30, 101746 (2022)

    Article  Google Scholar 

  22. A. Tanveer, M.Y. Malik, Slip and porosity effects on peristalsis of MHD Ree-Eyring nanofluid in curved geometry. Ain Shams Eng. J. 12, 955–968 (2021)

    Article  Google Scholar 

  23. J. Bear, Dynamics of fluids in porous media Dover Publications. INC N Y (1988).

  24. O. Bég, V. Prasad, A. Bakier, Q. Li, Mathematical modelling of buoyancy driven magneto-convective heat and mass transfer from an isothermal sphere in a non-Darcy permeable regime with thermophysical effects. Int. J. Appl. Math. Mech. 6, 1–22 (2010)

    Google Scholar 

  25. O.A. Bég, A. Bakier, V. Prasad, Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Comput. Mater. Sci. 46, 57–65 (2009)

    Article  Google Scholar 

  26. V.R. Prasad, S.A. Gaffar, O.A. Bég, Non-similar computational solutions for free convection boundary-layer flow of a nanofluid from an isothermal sphere in a non-Darcy porous medium. J. Nanofluids 4, 203–213 (2015)

    Article  Google Scholar 

  27. P. Hariharan, V. Seshadri, R.K. Banerjee, Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms. Math. Comput. Model. 48, 998–1017 (2008)

    Article  MathSciNet  Google Scholar 

  28. K. Javid, N. Ali, Z. Asghar, Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles. J. Braz. Soc. Mech. Sci. Eng. 41, 483 (2019)

    Article  Google Scholar 

  29. G.H. Sewify, K. Javid, M. Adeel, A. Abbasi, S.U. Khan, M. Omri et al., Blood flow in multi-sinusoidal curved passages with biomimetic rheology: an application of blood pumping. Mathematics 10, 1579 (2022)

    Article  Google Scholar 

  30. K.V. Prasad, H. Vaidya, F.M. Oudina, K.M. Ramadan, M.I. Khan, R. Choudhari et al., Peristaltic activity in blood flow of Casson nanoliquid with irreversibility aspects in vertical non-uniform channel. J. Indian Chem. Soc. 99, 100617 (2022)

    Article  Google Scholar 

  31. N.S. Akbar, D. Tripathi, O.A. Bég, Z. Khan, MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field. Acta Astronaut. 128, 1–12 (2016)

    Article  ADS  Google Scholar 

  32. M. Ajithkumar, P. Lakshminarayana, MHD peristaltic flow of chemically reactive casson nanofluid in a nonuniform porous inclined flexible channel with cross-diffusion effects. Int. J. Mod. Phys. B 37, 2350292 (2023)

    Article  ADS  Google Scholar 

  33. M. Ajithkumar, P. Lakshminarayana, K. Vajravelu, Diffusion effects on mixed convective peristaltic flow of a bi-viscous Bingham nanofluid through a porous medium with convective boundary conditions. Phys. Fluids 35 (2023a)

  34. M. Ajithkumar, P. Lakshminarayana, K. Vajravelu, Peristaltic transport of MHD Ree–Eyring fluid through a flexible channel under the influence of activation energy. Phys. Fluids 35 (2023b)

  35. M. Ajithkumar, P. Lakshminarayana, K. Vajravelu, Peristaltic flow of bioconvective Ree–Eyring nanofluid through an inclined elastic channel with partial slip effects. J. Appl. Phys. 134 (2023c)

  36. M. Ajithkumar, K. Vajravelu, G. Sucharitha, P. Lakshminarayana, Peristaltic flow of a bioconvective sutterby nanofluid in a flexible microchannel with compliant walls: application to hemodynamic instability. Phys. Fluids 35 (2023d)

  37. V. Jagadesh, S. Sreenadh, M. Ajithkumar, P. Lakshminarayana, G. Sucharitha, Investigation of dissipative heat transfer and peristaltic pumping on MHD Casson fluid flow in an inclined channel filled with porous medium. Numer. Heat Transf. Part B Fundam. 1–19 (2023)

  38. K. Vajravelu, S. Sreenadh, P. Lakshminarayana, The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Commun. Nonlinear Sci. Numer. Simul. 16, 3107–3125 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Riaz, S.U.D. Khan, A. Zeeshan, S.U. Khan, M. Hassan, T. Muhammad, Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J. Therm. Anal. Calorim. 143, 1997–2009 (2021)

    Article  Google Scholar 

  40. H. Waqas, S.U. Khan, M.M. Bhatti, M. Imran, Significance of bioconvection in chemical reactive flow of magnetized Carreau-Yasuda nanofluid with thermal radiation and second-order slip. J. Therm. Anal. Calorim. 140(3), 1293–1306 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate funding from Researchers Supporting Project number (RSP2024R58), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Javid.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, K., Khan, S., Khan, S.UD. et al. Slip and chemical reaction effects on the peristaltic rheology of a viscoplastic liquid in different wave frames: application of a high-permeability medium. Eur. Phys. J. Plus 139, 279 (2024). https://doi.org/10.1140/epjp/s13360-024-05015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05015-3

Navigation