Skip to main content
Log in

Transient analysis of size-dependent S-FGM micro-folded plates based on exact shear correction factor in the thermal environment

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present work is an attempt to develop a simple and accurate finite element formulation for the transient analysis of size-dependent S functionally graded material (S-FGM) micro-folded plates based on first-order shear deformation theory and taking exact shear correction factor in conjunction with modified couple stress theory in the formulation. Two micromechanical models, viz. rule of mixture and local representative volume elements (LRVE), are used to estimate the temperature-dependent material property of the S-FGM micro-folded plate. The top layer of the S-FGM micro-folded plate is subjected to a thermal shock, whereas the bottom layer is maintained at ambient temperature. Parametric studies are performed to investigate the effect of the number of folds, crank angle, shear correction factor, temperature gradient, material length scale ratio and boundary conditions on transient analysis of S-FGM micro-folded plates subjected to thermal shock. It is observed from results that a maximum change of 6.4661% and 10.5623% in amplitude of the non-dimensional tip deflection of a double-folded Al2O3/Ti–6Al–4V S-FGM cantilever microplate is observed on employing exact value of shear correction factor of 0.8009 and on increasing the temperature gradient from 100 to 300 K, respectively, obtained using LRVE micromechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sahmani, S., Ansari, R.: On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos. Struct. 95, 430–442 (2013). https://doi.org/10.1016/j.compstruct.2012.07.025

    Article  Google Scholar 

  2. Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106310

    Article  Google Scholar 

  3. Halder, S., Sheikh, A.H.: Bending analysis of composite folded plates by finite element method. Finite Elem. Anal. Des. 47, 477–485 (2011). https://doi.org/10.1016/j.finel.2010.12.006

    Article  Google Scholar 

  4. Thakur, B.R., Verma, S., Singh, B.N., Maiti, D.K.: Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory. Aerosp. Sci. Technol. 106, 106083 (2020). https://doi.org/10.1016/j.ast.2020.106083

    Article  Google Scholar 

  5. Niyogi, A.G., Laha, M.K., Sinha, P.K.: Finite element vibration analysis of laminated composite folded plate structures. Shock. Vib. 6(5–6), 273–283 (1999). https://doi.org/10.1155/1999/354234

    Article  Google Scholar 

  6. Enayati, S.G., Dardel, M.: The effect of bi-axial in-plane loads on nonlinear dynamics of micro-plates under harmonic excitation. Eur. J. Mech. Solids 78, 103836 (2019). https://doi.org/10.1016/j.euromechsol.2019.103836

    Article  MathSciNet  Google Scholar 

  7. Li, S.R., Ma, H.K.: Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping. Arch. Appl. Mech. 90, 1285–1304 (2020). https://doi.org/10.1007/s00419-020-01664-9

    Article  Google Scholar 

  8. Nguyen, H.X., Nguyen, T.N., Wahab, M.A., Bordas, S.P.A., Xuan, H.N., Vo, T.P.: A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. 313, 904–940 (2017). https://doi.org/10.1016/j.cma.2016.10.002

    Article  MathSciNet  Google Scholar 

  9. Liu, S., Yu, T., Bui, T.Q.: Size effects of functionally graded moderately thick microplates: a novel non-classical simple-FSDT isogeometric analysis. Eur. J. Mech. Solids 66, 446–458 (2017). https://doi.org/10.1016/j.euromechsol.2017.08.008

    Article  MathSciNet  Google Scholar 

  10. Reddy, J.N., Cheng, Z.Q.: Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. A/Solids 20, 841–855 (2001). https://doi.org/10.1016/S0997-7538(01)01174-3

    Article  Google Scholar 

  11. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011). https://doi.org/10.1016/j.jmps.2011.06.008

    Article  MathSciNet  Google Scholar 

  12. Thai, H.T., Choi, D.H.: Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013). https://doi.org/10.1016/j.compstruct.2012.08.023

    Article  Google Scholar 

  13. Jalali, M.H., Zargar, O., Baghani, M.: Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory. Iran J. Sci. Tech. Mech. Eng. 43(1), 1–11 (2018). https://doi.org/10.1007/s40997-018-0193-6

    Article  Google Scholar 

  14. Fattahi, A.M., Safaei, B., Qin, Z., Chu, F.: Experimental studies on elastic properties of high density polyethylene multi walled carbon nanotube nanocomposites. Steel Compos. Struct. 38(2), 177–187 (2021). https://doi.org/10.12989/scs.2021.38.2.177

    Article  Google Scholar 

  15. Chen, W.J., Li, X.P.: Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory. Arch. Appl. Mech. 83, 431–444 (2012). https://doi.org/10.1007/s00419-012-0689-2

    Article  Google Scholar 

  16. Esen, I.: Dynamics of size-dependent Timoshenko micro beams subjected to moving loads. Int. J. Mech. Sci. 175, 105501 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105501

    Article  Google Scholar 

  17. Nuhu, A.A., Safaei, B.: State-of-the-art of vibration analysis of small-sized structures by using nonclassical continuum theories of elasticity. Arch. Comput. Methods Eng. 29, 4959–5147 (2022). https://doi.org/10.1007/s11831-022-09754-3

    Article  Google Scholar 

  18. Nuhu, A.A., Safaei, B.: On the advances of computational nonclassical continuum theories of elasticity for bending analyses of small-sized plate-based structures: a review. Arch. Comput. Methods Eng. 30, 2959–3029 (2023). https://doi.org/10.1007/s11831-023-09891-3

    Article  Google Scholar 

  19. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM. J. Therm. Stress. 40(6), 1–25 (2016). https://doi.org/10.1080/01495739.2016.1258602

    Article  Google Scholar 

  20. Fazzolari, F.A.: Model characteristics of P- and S-FGM plates with temperature-dependent materials in thermal environment. J. Therm. Stress. 39, 854–873 (2016). https://doi.org/10.1080/01495739.2016.1189772

    Article  Google Scholar 

  21. Lee, W.H., Han, S.C., Park, W.T.: A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation. Compos. Struct. 122, 330–342 (2015). https://doi.org/10.1016/j.compstruct.2014.11.047

    Article  Google Scholar 

  22. Jung, W.Y., Park, W.T., Han, S.C.: Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87, 150–162 (2014). https://doi.org/10.1016/j.ijmecsci.2014.05.025

    Article  Google Scholar 

  23. Han, S.C., Park, W.T., Jung, W.Y.: A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface. Compos. Struct. 131, 1081–1089 (2015). https://doi.org/10.1016/j.compstruct.2015.06.025

    Article  Google Scholar 

  24. Duc, N.D., Quang, V.D., Anh, V.T.T.: The nonlinear dynamic and vibration of the S-FGM shallow spherical shells resting on an elastic foundations including temperature effects. Int. J. Mech. Sci. 123, 54–63 (2017). https://doi.org/10.1016/j.ijmecsci.2017.01.043

    Article  Google Scholar 

  25. Singh, S.J., Harsha, S.P.: Nonlinear dynamic analysis of sandwich S-FGM plate resting on Pasternak foundation under thermal environment. Eur. J. Mech. Solids 76, 155–179 (2019). https://doi.org/10.1016/j.euromechsol.2019.04.005

    Article  MathSciNet  Google Scholar 

  26. Kumar, S., Jana, P.: Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates. Int. J. Mech. Sci. 163, 1051015 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105105

    Article  Google Scholar 

  27. Mota, A.F., Loja, M.A.R., Barbosa, J.I., Rodrigues, J.A.: Porous functionally graded plates: an assessment of the influence of shear correction factor on static behaviour. Math. Comput. Appl. 25, 25 (2020). https://doi.org/10.3390/mca25020025

    Article  Google Scholar 

  28. Nguyen, T.K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83, 25–36 (2008). https://doi.org/10.1016/j.compstruct.2007.03.004

    Article  Google Scholar 

  29. Lee, S., Lim, T.K., Kim, J.H., Kim, J.H.: Temperature-dependent shear correction factor with heat transfer based on micromechanical properties for FGM plates. Thin Walled Struct. 181, 110095 (2022). https://doi.org/10.1016/j.tws.2022.110095

    Article  Google Scholar 

  30. Singha, M.K., Prakash, T., Ganapathi, M.: Finite element analysis of functionally graded plates under transverse load. Finite Elem. Anal. Des. 47, 453–460 (2011). https://doi.org/10.1016/j.finel.2010.12.001

    Article  Google Scholar 

  31. Lee, Y.H., Bae, S.I., Kim, J.H.: Thermal buckling behaviour of functionally graded plates based on neutral surface. Compos. Struct. 137, 208–214 (2016). https://doi.org/10.1016/j.compstruct.2015.11.023

    Article  Google Scholar 

  32. Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M., Bedia, E.A.A.: Analytical solutions for static shear correction factor of functionally graded rectangular beams. Mech. Adv. Mater. Struct. 19(8), 641–652 (2012). https://doi.org/10.1080/15376494.2011.581409

    Article  Google Scholar 

  33. Rad, F.D., Beheshti, A.: A nonlinear strain gradient finite element for microbeams and microframes. Acta Mech. (2017). https://doi.org/10.1007/s00707-017-1798-3

    Article  MathSciNet  Google Scholar 

  34. Tahani, M., Askari, A.R., Mohandes, Y., Hassani, B.: Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory. Int. J. Mech. Sci. 94–95, 185–198 (2018). https://doi.org/10.1016/j.ijmecsci.2015.03.004

    Article  Google Scholar 

  35. Safaei, B., Onyibo, E.C., Hurdoganoglu, D.: Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Univ. Ser. Mech. Eng. 20(2), 279–306 (2022). https://doi.org/10.22190/FUME220201009S

    Article  Google Scholar 

  36. Naghdabadi, R., Kordkheili, S.A.H.: A finite element formulation for analysis of functionally graded plates and shells. Arch. Appl. Mech. 74, 375–386 (2005). https://doi.org/10.1007/BF02637037

    Article  Google Scholar 

  37. Nampally, P., Karttunen, A.T., Reddy, J.N.: Nonlinear finite element analysis of lattice core sandwich plates. Int. J. Non-linear Mech. 121, 103423 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103423

    Article  Google Scholar 

  38. Akbarzadeh, A.H., Abedini, A., Chen, Z.T.: Effect of micromechanical models on structural responses of functionally graded plates. Compos. Struct. 119, 598–609 (2015). https://doi.org/10.1016/j.compstruct.2014.09.031

    Article  Google Scholar 

  39. Karami, B., Shahsavari, D., Janghorban, M., Li, L.: Influence of homogenization schemes on vibration of functionally graded curved microbeams. Compos. Struct. 2016, 67–79 (2019). https://doi.org/10.1016/j.compstruct.2019.02.089

    Article  Google Scholar 

  40. Nemati, A.R., Mahmoodabadi, M.J.: Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler–Pasternak foundation in various thermal environments. Arch. Appl. Mech. 90, 883–915 (2020). https://doi.org/10.1007/s00419-019-01646-6

    Article  Google Scholar 

  41. Nguyen, D.K., Bui, T.T.H., Tran, T.T.H., Alexandrov, S.: Large deflection of functionally graded sandwich beams with influence of homogenization schemes. Arch. Appl. Mech. 92(4), 1–19 (2022). https://doi.org/10.1007/s00419-022-02140-2

    Article  Google Scholar 

  42. Shahsavari, D., Karami, B.: Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates. Arch. Civ. Mech. Eng. 22, 92 (2022). https://doi.org/10.1007/s43452-022-00409-5

    Article  Google Scholar 

  43. Javani, M., Kiani, Y., Eslami, M.R.: On the free vibration of FG-GPLRC folded plates using GDQE procedure. Compos. Struct. 286, 115273 (2022). https://doi.org/10.1016/j.compstruct.2022.115273

    Article  Google Scholar 

  44. Singha, T.D., Rout, M., Bandyopadhyay, T., Karmakar, A.: Free vibration of rotating pretwisted FG-GRC sandwich conical shells in thermal environment using HSDT. Compos. Struct. 257, 113144 (2021). https://doi.org/10.1016/j.compstruct.2020.113144

    Article  Google Scholar 

  45. Goldenveizer, A.L.: Theory of Elastic Thin Shells. Pergamon Press, Oxford (1961)

    Google Scholar 

  46. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–662 (1998). https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  47. Pandey, S., Pradyumna, S.: A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels. Compo. Struct. 160, 877–886 (2017). https://doi.org/10.1016/j.compstruct.2016.10.040

    Article  Google Scholar 

  48. Gasik, M.M., Lilius, K.R.: Evaluation of properties of W-Cu functional gradient materials by micromechanical model. Comput. Mater. Sci. 3, 41–49 (1994). https://doi.org/10.1016/0927-0256(94)90151-1

    Article  Google Scholar 

  49. Gasik, M.M.: Micromechanical modelling of functionally graded materials. Comput. Mater. Sci. 13, 42–55 (1998). https://doi.org/10.1016/S0927-0256(98)00044-5

    Article  Google Scholar 

  50. Trinh, L.C., Vo, T.P., Thai, H.T., Mantari, J.L.: Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads. Compos. Part B 124, 218–241 (2017). https://doi.org/10.1016/j.compositesb.2017.05.042

    Article  Google Scholar 

  51. Liu, B., Shi, T., Xing, Y.: Three-dimensional free vibration analyses of functionally graded laminated shells under thermal environment by a hierarchical quadrature element method. Compos. Struct. 252, 112733 (2020). https://doi.org/10.1016/j.compstruct.2020.112733

    Article  Google Scholar 

  52. Jha, D.K., Kant, T., Singh, R.K.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013). https://doi.org/10.1016/j.compstruct.2012.09.001

    Article  Google Scholar 

  53. Huang, X.L., Dong, L., Wei, G.Z., Zhong, D.Y.: Nonlinear free and forced vibrations of porous sigmoid functionally graded plates on nonlinear elastic foundations. Compos. Struct. 228, 111326 (2019). https://doi.org/10.1016/j.compstruct.2019.111326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ankit Kumar developed the mathematical formulation, validated the codes with benchmark examples, and performed parametric studies. Further, he wrote the original draft of the manuscript. Shashank Pandey reviewed, revised, and corrected the original draft of the manuscript. The entire work was carried out under his supervision. He also arranged all the resources required to carry out the present research work.

Corresponding author

Correspondence to Shashank Pandey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Pandey, S. Transient analysis of size-dependent S-FGM micro-folded plates based on exact shear correction factor in the thermal environment. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-024-02578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-024-02578-6

Keywords

Navigation