Skip to main content
Log in

Reverberation of the Vela Pulsar Wind Nebula

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Transonic (with Mach number \(M_{s}\gtrsim 1\)) motion of a pulsar relative to the external medium can help its compact pulsar wind nebula develop a double-torus X-ray morphology. The double-torus structure can reverberate as a whole under the dynamic pressure of the external flow. For a flow aligned with the symmetry axis of the nebula, the response of the double-torus is uniform in azimuth. For a misaligned flow, the leeward sides of the tori respond with some delay relative to their windward sides. The delay can cause a curious swaying in the short midsection of the leeward jet of the compact X-ray nebula. Within the framework of the relativistic magnetohydrodynamical model of a pulsar wind nebula we study the dynamics of the nebular outflows contributing to the swaying of the jet. When applied to the Vela X-ray nebula, the model allows us to naturally relate two distinct phenomena, the swaying of the bright midsection of the Vela lee jet and the reverberation of its double-torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Here \(\alpha\) is a tilt of pulsar’s magnetic axis to its rotational axis. The wind magnetization \(\sigma\) is the ratio of the magnetic and kinetic energy densities of the relativistic pulsar wind. In the laboratory frame of reference, this ratio reads as \(\sigma=B^{2}/\left(4\pi\Gamma^{2}\left(\rho c^{2}/\Gamma+4p\right)\right)\), where \(\Gamma\) is the Lorentz factor of the wind flow, and \(p\), \(\rho\) and \(B\) are pressure, mass density, and magnetic field of the wind (in the laboratory frame).

  2. In Vela, this shock is apparently responsible for the X-ray feature at the beginning of the bright midsection of the leeward jet (Fateeva et al. 2023); this feature has the shape of a thin transverse bar, the width of which is greater than the cross-section of the jet (Pavlov et al. 2001; Kargaltsev et al. 2002).

  3. The point of the working surface of the shock closest to the pulsar.

  4. Primarily, on the ambient medium density and the pulsar’s spin-down luminosity, which determine the size of the compact X-ray nebula.

  5. Here we leave aside the discussion of changes in radiation efficiency and spectra of PWNe during the reverberation phase, which, in principle, can be observed; see, e.g., Torres et al. (2019).

REFERENCES

  1. R. Bandiera, N. Bucciantini, B. Olmi, and D. F. Torres, Mon. Not. R. Astron. Soc. 525, 2839 (2023).

    Article  ADS  Google Scholar 

  2. J. M. Blondin, R. A. Chevalier, and D. M. Frierson, Astrophys. J. 563, 806 (2001).

    Article  ADS  Google Scholar 

  3. R. Bühler and M. Giomi, Mon. Not. R. Astron. Soc. 462, 2762 (2016).

    Article  ADS  Google Scholar 

  4. R. Bühler and R. Blandford, Rep. Prog. Phys., 77, 066901 (2014).

  5. N. F. Camus, S. S. Komissarov, N. Bucciantini, and P. Hughes, Mon. Not. R. Astron. Soc. 400, 1241 (2009).

    Article  ADS  Google Scholar 

  6. R. A. Chevalier and S. P. Reynolds, Astrophys. J. 740, L26 (2011).

    Article  ADS  Google Scholar 

  7. R. Dodson, D. Lewis, D. McConnel, and A. A. Deshpande, Mon. Not. R. Astron. Soc., 343, 116 (2003a).

    Article  ADS  Google Scholar 

  8. R. Dodson, D. Legge, J. E. Reynolds, and P. M. McCulloch, Astrophys. J. 596, 1137 (2003b).

    Article  ADS  Google Scholar 

  9. M. Durant, G. G. Pavlov, O. Kargaltsev, et al., Astrophys. J. 763, 72 (2013).

    Article  ADS  Google Scholar 

  10. S. S. Fateeva, K. P. Levenfish, G. A. Ponomarev, et al., Astron. Lett. 49, 56 (2023).

    Article  ADS  Google Scholar 

  11. D. J. Helfand, E. V. Gotthelf, and J.P. Halpern, Astrophys. J. 556, 380 (2001).

    Article  ADS  Google Scholar 

  12. J. J. Hester, K. Mori, D. Burrows, J. S. Gallagher, J. R. Graham, M. Halverson, A. Kader, F. C. Michel, and P. Scowen, Astrophys. J. 577, L49 (2002).

    Article  ADS  Google Scholar 

  13. O. Kargaltsev, G. G. Pavlov, D. Sanwal, and G. P. Garmire, ASP Conf. Ser. 271, 181 (2002).

  14. S. S. Komissarov and Y. E. Lyubarsky, Mon. Not. R. Astron. Soc. 349, 779 (2004).

    Article  ADS  Google Scholar 

  15. K. P. Levenfish, G. A. Ponomaryov, A. E. Petrov, et al., J. Phys.: Conf. Ser. 2103, 012020 (2021).

  16. K. Liu, F. Xie, Y. Liu et al., Astrophys. J. Lett. 959, L2 (2023).

    Article  ADS  Google Scholar 

  17. F. Mattana, D. Götz, R. Terrier, et al., Astrophys. J. 743, L18 (2011).

    Article  ADS  Google Scholar 

  18. A. Mignone, G. Bodo, S. Massaglia, et al., Astrophys. J. Suppl. Ser. 170, 228 (2007).

    Article  ADS  Google Scholar 

  19. C.-Y. Ng and R. W. Romani, Astrophys. J. 601, 479 (2004).

    Article  ADS  Google Scholar 

  20. B. Olmi and N. Bucciantini, PASA, 40, e007 (2023).

  21. G. G. Pavlov, O. Kargaltsev, D. Sanwal, and G. P. Garmire, Astrophys. J. 554, L189 (2001).

    Article  ADS  Google Scholar 

  22. G. A. Ponomaryov, A. N. Fursov, S. S. Fateeva, et al., Astron. Lett. 49, 65 (2023).

    Article  ADS  Google Scholar 

  23. G. A. Ponomaryov, K. P. Levenfish, and A. E. Petrov, J. Phys.: Conf. Ser. 1400, 022027 (2019).

  24. G. A. Ponomaryov, K. P. Levenfish, A. E. Petrov, and Yu. A. Kropotina, J. Phys.: Conf. Ser. 1697, 012022 (2020).

  25. G. A. Ponomaryov, K. P. Levenfish, and A. E. Petrov, J. Phys.: Conf. Ser. 2103, 012021 (2021).

  26. O. Porth, S. S. Komissarov, and R. Keppens, Mon. Not. R. Astron. Soc. 438, 278 (2014).

    Article  ADS  Google Scholar 

  27. E. van der Swaluw, T. P. Downes, and R. Keegan, Astron. Astrophys. 420, 937 (2004).

    Article  ADS  Google Scholar 

  28. X. Tang and R. A. Chevalier, Astrophys. J. 752, 83 (2012).

    Article  ADS  Google Scholar 

  29. D. F. Torres, T. Lin, and F. Coti Zelati, Mon. Not. R. Astron. Soc. 486, 1019 (2019).

    Article  ADS  Google Scholar 

  30. F. Xie, A. Di Marco, F. La Monaca, K. Liu, F. Muleri, N. Bucciantini, R. W. Romani, E Costa, et al., Nature (London, U.K.) 612, 658 (2022).

    Article  ADS  Google Scholar 

  31. M. C. Weisskopf, J. J. Hester, A. F. Tennant, et al., Astrophys. J. 536, L81 (2000).

    Article  ADS  Google Scholar 

  32. L. del Zanna, E. Amato, and N. Bucciantini, Astron. Astrophys. 421, 1063 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the anonymous referee for careful reading of the manuscript and useful comments. We are also grateful to the developers of the PLUTO code (Mignone et al. 2007). The numerical rMHD modeling was performed by A.P. supported by the RSF grant no. 21-72-20020. The Vela PWN observations data were analyzed by K.P. and G.P. supported by the baseline project no. 0040-2019-0025 of Ioffe Institute. The numerical modeling was performed partly at the Tornado subsystem of the Supercomputer Center of Peter the Great St. Petersburg Polytechnic University, and partly using the resources of the JSCC RAS.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Petrov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Our numerical models of double-torus PWNe are built on the rMHD module of the PLUTO code (Mignone et al. 2007). The models are axisymmetric, with the ‘‘northern’’ and ‘‘southern’’ hemispheres simulated independently (2.5D geometry). The numerical grid is spherical \(\left(r,\theta\right)\), with a logarithmically increasing step in \(r\) and a uniform step in \(\theta\). The simulation box is \(r=(0.0002-R)\) l.y. The basic grid has \(N\) cells in \(r\) and 32 cells in \(\theta\). Level \(L\) Adaptive Mesh Refinement (AMR) is activated at time \(t_{1}\) (in years). The pulsar inclination \(\alpha=80^{\circ}\). The initial wind magnetization: \(\sigma_{0}=0.03\) in model M1 (Fig. 1, top), and \(\sigma_{0}=0.1\) in models M2 (Fig. 1, bottom) and M3 (Fig. 2). The model parameters:

$$\textrm{M}1:\quad R=1.40,\quad N=88,\quad t_{1}=8,\quad L=4;$$
$$\textrm{M}2:\quad R=3.13,\quad N=96,\quad t_{1}=0,\quad L=3;$$
$$\textrm{M}3:\quad R=3.13,\quad N=96,\quad t_{1}=6,\quad L=2.$$

Mass density of the ambient medium \(\rho_{a}=10^{-28}\) g cm\({}^{-3}\). The wind power is normalized on the Vela pulsar spin-down luminosity \(\dot{E}=6.9\times 10^{36}\textrm{ erg}\textrm{ s}^{-1}\). To allow comparison with other PWN models in the literature, we applied the widely used pulsar wind model and the recipe for calculating synthetic maps of synchrotron radiation based on MHD models (Porth et al. 2014; see also Bühler and Giomi 2016); their details are reiterated in Ponomaryov et al. (2023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.E., Levenfish, K.P. & Ponomaryov, G.A. Reverberation of the Vela Pulsar Wind Nebula. Astron. Lett. 49, 777–786 (2023). https://doi.org/10.1134/S106377372312006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372312006X

Keywords:

Navigation